Home
Class 12
MATHS
If z^(2) + z + 1 = 0 where z is a com...

If ` z^(2) + z + 1 ` = 0 where z is a complex number then the value of ` ( z + (1)/( z))^(2) + ( z^(2) + (1)/( z^(2)))^(2) + . . . + ( z^(6) + (1)/( z^(6))) ^(2) = `

A

6

B

12

C

18

D

54

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( z^2 + z + 1 = 0 \) and find the value of the expression \[ (z + \frac{1}{z})^2 + (z^2 + \frac{1}{z^2})^2 + (z^3 + \frac{1}{z^3})^2 + (z^4 + \frac{1}{z^4})^2 + (z^5 + \frac{1}{z^5})^2 + (z^6 + \frac{1}{z^6})^2, \] we will follow these steps: ### Step 1: Solve the quadratic equation The roots of the equation \( z^2 + z + 1 = 0 \) can be found using the quadratic formula: \[ z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm \sqrt{3}i}{2}. \] Let \( z_1 = \frac{-1 + \sqrt{3}i}{2} \) and \( z_2 = \frac{-1 - \sqrt{3}i}{2} \). ### Step 2: Identify the roots as cube roots of unity The roots \( z_1 \) and \( z_2 \) can be expressed as: \[ z_1 = \omega, \quad z_2 = \omega^2, \] where \( \omega = e^{2\pi i / 3} \) is a primitive cube root of unity. It satisfies \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). ### Step 3: Calculate \( z + \frac{1}{z} \) For \( z = \omega \): \[ \frac{1}{z} = \frac{1}{\omega} = \omega^2. \] Thus, \[ z + \frac{1}{z} = \omega + \omega^2 = -1. \] ### Step 4: Calculate \( z^n + \frac{1}{z^n} \) for \( n = 1, 2, \ldots, 6 \) Using the properties of \( \omega \): - For \( n = 1 \): \[ z + \frac{1}{z} = -1. \] - For \( n = 2 \): \[ z^2 + \frac{1}{z^2} = (\omega^2 + \omega) = -1. \] - For \( n = 3 \): \[ z^3 + \frac{1}{z^3} = 1 + 1 = 2. \] - For \( n = 4 \): \[ z^4 + \frac{1}{z^4} = \omega + \omega^2 = -1. \] - For \( n = 5 \): \[ z^5 + \frac{1}{z^5} = \omega^2 + \omega = -1. \] - For \( n = 6 \): \[ z^6 + \frac{1}{z^6} = 1 + 1 = 2. \] ### Step 5: Calculate the squares of these sums Now we compute the squares: \[ (z + \frac{1}{z})^2 = (-1)^2 = 1, \] \[ (z^2 + \frac{1}{z^2})^2 = (-1)^2 = 1, \] \[ (z^3 + \frac{1}{z^3})^2 = (2)^2 = 4, \] \[ (z^4 + \frac{1}{z^4})^2 = (-1)^2 = 1, \] \[ (z^5 + \frac{1}{z^5})^2 = (-1)^2 = 1, \] \[ (z^6 + \frac{1}{z^6})^2 = (2)^2 = 4. \] ### Step 6: Sum the squares Now we sum these values: \[ 1 + 1 + 4 + 1 + 1 + 4 = 12. \] ### Final Answer Thus, the value of \[ (z + \frac{1}{z})^2 + (z^2 + \frac{1}{z^2})^2 + (z^3 + \frac{1}{z^3})^2 + (z^4 + \frac{1}{z^4})^2 + (z^5 + \frac{1}{z^5})^2 + (z^6 + \frac{1}{z^6})^2 = 12. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If z is a complex number such that |z|>=2 then the minimum value of |z+(1)/(2)| is

For any two complex numbers z_(1),z_(2) the values of |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) , is

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

For complex number z,|z-1|+|z+1|=2 then z lies on

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. The value of sum (n = 1) ^(5) ( x ^(n) + (1)/( x^(n)))^(2) " where "...

    Text Solution

    |

  2. If t^(2) + t + 1 = 0 then, the value of ( t + (1)/( t))^(2) + ( t^(...

    Text Solution

    |

  3. If z^(2) + z + 1 = 0 where z is a complex number then the value of ...

    Text Solution

    |

  4. The common roots of the equation z^3+2z^2+2z+1=0&z^(1985)+z^(100)+1...

    Text Solution

    |

  5. If the cube roots of unity are 1,omega,omega^2, then the roots of the ...

    Text Solution

    |

  6. (( - 1 + sqrt""(-3))/(2))^(100) + ((- 1 - sqrt""(-3))/( 2))^(100) equ...

    Text Solution

    |

  7. ( i + sqrt(3) )^(100) + (i - sqrt(3))^(100) + 2 ^(100) =

    Text Solution

    |

  8. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  9. If i=sqrt(-1), then 4+5(-1/2+(isqrt(3))/(2))^(334)+3(1/2+(isqrt(3))/...

    Text Solution

    |

  10. If 1;w;w^2 are cube root of unity and n is a positive integer;then 1+w...

    Text Solution

    |

  11. If n is a multiple of 3, then 1 + omega ^(n) + omega ^(2n) =

    Text Solution

    |

  12. If alpha , beta are the roots of x^(2) - 2 x + 4 = 0 " then " (alph...

    Text Solution

    |

  13. If g(x) and h(x) are two polynomials such that the polynomials P(x)=g(...

    Text Solution

    |

  14. If alpha , beta are complex cube roots of unity and x = a + b, y = ...

    Text Solution

    |

  15. If a+b+c=0 and omega,omega^2 are imaginary cube roots of unity, then (...

    Text Solution

    |

  16. If omega is a cube root of unity but not equal to 1, then minimum valu...

    Text Solution

    |

  17. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  18. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  19. If omega pm 1 is a cube root of unity, the value of (a + b omega + c o...

    Text Solution

    |

  20. If alpha, beta, gamma are the cube roots of p, p lt 0 then for an...

    Text Solution

    |