Home
Class 12
MATHS
(( - 1 + sqrt""(-3))/(2))^(100) + ((- 1 ...

`(( - 1 + sqrt""(-3))/(2))^(100) + ((- 1 - sqrt""(-3))/( 2))^(100)` equals

A

2

B

0

C

`-1`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left( \frac{-1 + \sqrt{-3}}{2} \right)^{100} + \left( \frac{-1 - \sqrt{-3}}{2} \right)^{100}\), we can follow these steps: ### Step 1: Identify the complex numbers Let: \[ z_1 = \frac{-1 + \sqrt{-3}}{2} \] \[ z_2 = \frac{-1 - \sqrt{-3}}{2} \] ### Step 2: Express the complex numbers in polar form We can rewrite \(z_1\) and \(z_2\) in terms of \(i\) (the imaginary unit): \[ z_1 = \frac{-1 + i\sqrt{3}}{2}, \quad z_2 = \frac{-1 - i\sqrt{3}}{2} \] ### Step 3: Find the modulus and argument The modulus of \(z_1\) and \(z_2\) is: \[ |z_1| = |z_2| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 \] Next, we find the arguments: \[ \text{arg}(z_1) = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \tan^{-1}(-\sqrt{3}) = \frac{2\pi}{3} \quad (\text{in the second quadrant}) \] \[ \text{arg}(z_2) = \tan^{-1}\left(\frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \quad (\text{in the third quadrant}) \] ### Step 4: Write in exponential form Thus, we can express \(z_1\) and \(z_2\) as: \[ z_1 = e^{i \frac{2\pi}{3}}, \quad z_2 = e^{i \frac{4\pi}{3}} \] ### Step 5: Raise to the power of 100 Now we compute: \[ z_1^{100} = \left(e^{i \frac{2\pi}{3}}\right)^{100} = e^{i \frac{200\pi}{3}} = e^{i \left(66\pi + \frac{2\pi}{3}\right)} = e^{i \frac{2\pi}{3}} \quad (\text{since } e^{i 66\pi} = 1) \] \[ z_2^{100} = \left(e^{i \frac{4\pi}{3}}\right)^{100} = e^{i \frac{400\pi}{3}} = e^{i \left(133\pi + \frac{1\pi}{3}\right)} = e^{i \frac{4\pi}{3}} \quad (\text{since } e^{i 133\pi} = -1) \] ### Step 6: Add the two results Now we add: \[ z_1^{100} + z_2^{100} = e^{i \frac{2\pi}{3}} + e^{i \frac{4\pi}{3}} \] ### Step 7: Use Euler's formula Using Euler's formula: \[ e^{i \frac{2\pi}{3}} = -\frac{1}{2} + i \frac{\sqrt{3}}{2}, \quad e^{i \frac{4\pi}{3}} = -\frac{1}{2} - i \frac{\sqrt{3}}{2} \] Adding these gives: \[ z_1^{100} + z_2^{100} = \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) + \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2}\right) = -1 \] ### Final Result Thus, the final answer is: \[ \left( \frac{-1 + \sqrt{-3}}{2} \right)^{100} + \left( \frac{-1 - \sqrt{-3}}{2} \right)^{100} = -1 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

((-1+sqrt(3)i)/(2))^(100)+((-1-sqrt(3)i)/(2))^(100)=

((-1-i)/(sqrt(2)))^(100) equals

If i=sqrt(-)1, then 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(365) is equal to (1)1-i sqrt(3)(2)-1+i sqrt(3)(3)i sqrt(3)(4)-i sqrt(3)

The value of (i+sqrt(3))^(100)+(i-sqrt(3))^(100)+2^(100) is

(1)/(sqrt(3)+sqrt(2)) is equal to

Write the comple number in a + ib form unsing cube roots of unity: (a) (-(1)/(2) + sqrt(3)/(2)i)^(1000) (b)If z =(sqrt(3) + i)^(17)/((1-i)^(50)) (c) (i + sqrt(3))^(100) + (i+ sqrt(3))^(100) + 2^(100)

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. The common roots of the equation z^3+2z^2+2z+1=0&z^(1985)+z^(100)+1...

    Text Solution

    |

  2. If the cube roots of unity are 1,omega,omega^2, then the roots of the ...

    Text Solution

    |

  3. (( - 1 + sqrt""(-3))/(2))^(100) + ((- 1 - sqrt""(-3))/( 2))^(100) equ...

    Text Solution

    |

  4. ( i + sqrt(3) )^(100) + (i - sqrt(3))^(100) + 2 ^(100) =

    Text Solution

    |

  5. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  6. If i=sqrt(-1), then 4+5(-1/2+(isqrt(3))/(2))^(334)+3(1/2+(isqrt(3))/...

    Text Solution

    |

  7. If 1;w;w^2 are cube root of unity and n is a positive integer;then 1+w...

    Text Solution

    |

  8. If n is a multiple of 3, then 1 + omega ^(n) + omega ^(2n) =

    Text Solution

    |

  9. If alpha , beta are the roots of x^(2) - 2 x + 4 = 0 " then " (alph...

    Text Solution

    |

  10. If g(x) and h(x) are two polynomials such that the polynomials P(x)=g(...

    Text Solution

    |

  11. If alpha , beta are complex cube roots of unity and x = a + b, y = ...

    Text Solution

    |

  12. If a+b+c=0 and omega,omega^2 are imaginary cube roots of unity, then (...

    Text Solution

    |

  13. If omega is a cube root of unity but not equal to 1, then minimum valu...

    Text Solution

    |

  14. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  15. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  16. If omega pm 1 is a cube root of unity, the value of (a + b omega + c o...

    Text Solution

    |

  17. If alpha, beta, gamma are the cube roots of p, p lt 0 then for an...

    Text Solution

    |

  18. If alpha , beta , gamma are cube roots of p lt 0, then for any x , y,...

    Text Solution

    |

  19. The value |(1 + omega,omega^(2),-omega),(1 + omega^(2),omega,-omega^(...

    Text Solution

    |

  20. If omega is imaginary cube root of unity then Delta = |(1,1 + i ...

    Text Solution

    |