Home
Class 12
MATHS
( i + sqrt(3) )^(100) + (i - sqrt(3))^(1...

`( i + sqrt(3) )^(100) + (i - sqrt(3))^(100) + 2 ^(100) = `

A

1

B

`-1`

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(( i + \sqrt{3} )^{100} + ( i - \sqrt{3} )^{100} + 2^{100}\), we can use the polar form of complex numbers and De Moivre's theorem. ### Step-by-Step Solution: 1. **Convert to Polar Form**: - For \( z_1 = i + \sqrt{3} \): - The modulus is \( |z_1| = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = 2 \). - The argument (angle) is \( \theta_1 = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \). - Thus, \( z_1 = 2 \left( \cos\frac{\pi}{6} + i \sin\frac{\pi}{6} \right) \). - For \( z_2 = i - \sqrt{3} \): - The modulus is \( |z_2| = \sqrt{(-\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = 2 \). - The argument (angle) is \( \theta_2 = \tan^{-1}\left(\frac{1}{-\sqrt{3}}\right) = \frac{5\pi}{6} \). - Thus, \( z_2 = 2 \left( \cos\frac{5\pi}{6} + i \sin\frac{5\pi}{6} \right) \). 2. **Apply De Moivre's Theorem**: - Using De Moivre's theorem, we have: \[ (z_1)^{100} = (2)^{100} \left( \cos\left(100 \cdot \frac{\pi}{6}\right) + i \sin\left(100 \cdot \frac{\pi}{6}\right) \right) \] \[ (z_2)^{100} = (2)^{100} \left( \cos\left(100 \cdot \frac{5\pi}{6}\right) + i \sin\left(100 \cdot \frac{5\pi}{6}\right) \right) \] 3. **Calculate the Angles**: - For \( z_1^{100} \): \[ 100 \cdot \frac{\pi}{6} = \frac{100\pi}{6} = \frac{50\pi}{3} = 16\pi + \frac{2\pi}{3} \quad (\text{since } 16\pi \text{ is a multiple of } 2\pi) \] Thus, \( \cos\left(\frac{50\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \) and \( \sin\left(\frac{50\pi}{3}\right) = \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \). - For \( z_2^{100} \): \[ 100 \cdot \frac{5\pi}{6} = \frac{500\pi}{6} = \frac{250\pi}{3} = 83\pi + \frac{1\pi}{3} \quad (\text{since } 83\pi \text{ is a multiple of } 2\pi) \] Thus, \( \cos\left(\frac{250\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \) and \( \sin\left(\frac{250\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \). 4. **Combine the Results**: - Now substituting back: \[ (z_1)^{100} = 2^{100} \left( -\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = -2^{99} + i 2^{99} \sqrt{3} \] \[ (z_2)^{100} = 2^{100} \left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = 2^{99} + i 2^{99} \sqrt{3} \] 5. **Final Calculation**: - Adding \( (z_1)^{100} + (z_2)^{100} + 2^{100} \): \[ (-2^{99} + i 2^{99} \sqrt{3}) + (2^{99} + i 2^{99} \sqrt{3}) + 2^{100} \] The real parts cancel out: \[ 0 + i 2^{100} \sqrt{3} + 2^{100} = 2^{100} + i 2^{100} \sqrt{3} \] Thus, the final answer is: \[ 2^{100} + i 2^{100} \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

((-1+sqrt(3)i)/(2))^(100)+((-1-sqrt(3)i)/(2))^(100)=

Prove that [(i+sqrt(3))/(-i+sqrt(3))]^(100)+[(i-sqrt(3))/(i+sqrt(3))]^(100)=-1

x+iy=(1-i sqrt(3))^(100), then (x,y)=

Prove that ((i+sqrt3)/2)^100+((i-sqrt3)/2)^100 +1=0.

((-1-i)/(sqrt(2)))^(100) equals

Prove that ((i-sqrt(3))/(-i+sqrt(3)))^(200)+((i-sqrt(3))/(i+sqrt(3)))^(200)=-1

The height of a tower is 100 m. When the angle of elevation of the sun changes from 30o to 45o , the shadow of the tower becomes x metres less. The value of x is (a) 100 m (b) 100sqrt(3)m (c) 100(sqrt(3)-1)m (d) (100)/(sqrt(3))m

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If the cube roots of unity are 1,omega,omega^2, then the roots of the ...

    Text Solution

    |

  2. (( - 1 + sqrt""(-3))/(2))^(100) + ((- 1 - sqrt""(-3))/( 2))^(100) equ...

    Text Solution

    |

  3. ( i + sqrt(3) )^(100) + (i - sqrt(3))^(100) + 2 ^(100) =

    Text Solution

    |

  4. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  5. If i=sqrt(-1), then 4+5(-1/2+(isqrt(3))/(2))^(334)+3(1/2+(isqrt(3))/...

    Text Solution

    |

  6. If 1;w;w^2 are cube root of unity and n is a positive integer;then 1+w...

    Text Solution

    |

  7. If n is a multiple of 3, then 1 + omega ^(n) + omega ^(2n) =

    Text Solution

    |

  8. If alpha , beta are the roots of x^(2) - 2 x + 4 = 0 " then " (alph...

    Text Solution

    |

  9. If g(x) and h(x) are two polynomials such that the polynomials P(x)=g(...

    Text Solution

    |

  10. If alpha , beta are complex cube roots of unity and x = a + b, y = ...

    Text Solution

    |

  11. If a+b+c=0 and omega,omega^2 are imaginary cube roots of unity, then (...

    Text Solution

    |

  12. If omega is a cube root of unity but not equal to 1, then minimum valu...

    Text Solution

    |

  13. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  14. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  15. If omega pm 1 is a cube root of unity, the value of (a + b omega + c o...

    Text Solution

    |

  16. If alpha, beta, gamma are the cube roots of p, p lt 0 then for an...

    Text Solution

    |

  17. If alpha , beta , gamma are cube roots of p lt 0, then for any x , y,...

    Text Solution

    |

  18. The value |(1 + omega,omega^(2),-omega),(1 + omega^(2),omega,-omega^(...

    Text Solution

    |

  19. If omega is imaginary cube root of unity then Delta = |(1,1 + i ...

    Text Solution

    |

  20. |(6i,-3i,1),(4,3i,-1),(20,3,i)| = x + iy then (x,y) is

    Text Solution

    |