Home
Class 12
MATHS
If alpha , beta are the roots of x^(2...

If ` alpha , beta ` are the roots of ` x^(2) - 2 x + 4 = 0 " then " (alpha )/(beta)` is equal to

A

`(1)/(2) (1 - sqrt(3i))`

B

`-(1)/(2)(1+ sqrt(3))`

C

`(1)/(2)(- 1 pm sqrt(3i))`

D

`(1)/(2) ( sqrt(3)-i)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{\alpha}{\beta}\) where \(\alpha\) and \(\beta\) are the roots of the equation \(x^2 - 2x + 4 = 0\), we can follow these steps: ### Step 1: Identify the coefficients The given quadratic equation is: \[ x^2 - 2x + 4 = 0 \] Here, \(a = 1\), \(b = -2\), and \(c = 4\). ### Step 2: Use the quadratic formula to find the roots The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values of \(a\), \(b\), and \(c\): \[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{2 \pm \sqrt{4 - 16}}{2} \] \[ x = \frac{2 \pm \sqrt{-12}}{2} \] \[ x = \frac{2 \pm 2i\sqrt{3}}{2} \] \[ x = 1 \pm i\sqrt{3} \] ### Step 3: Identify the roots Thus, the roots are: \[ \alpha = 1 + i\sqrt{3}, \quad \beta = 1 - i\sqrt{3} \] ### Step 4: Calculate \(\frac{\alpha}{\beta}\) Now we calculate: \[ \frac{\alpha}{\beta} = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}} \] ### Step 5: Multiply by the conjugate To simplify this expression, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{\alpha}{\beta} = \frac{(1 + i\sqrt{3})(1 + i\sqrt{3})}{(1 - i\sqrt{3})(1 + i\sqrt{3})} \] ### Step 6: Simplify the denominator The denominator simplifies as follows: \[ (1 - i\sqrt{3})(1 + i\sqrt{3}) = 1^2 - (i\sqrt{3})^2 = 1 - (-3) = 1 + 3 = 4 \] ### Step 7: Simplify the numerator Now simplify the numerator: \[ (1 + i\sqrt{3})^2 = 1^2 + 2 \cdot 1 \cdot i\sqrt{3} + (i\sqrt{3})^2 = 1 + 2i\sqrt{3} - 3 = -2 + 2i\sqrt{3} \] ### Step 8: Combine the results Now we have: \[ \frac{\alpha}{\beta} = \frac{-2 + 2i\sqrt{3}}{4} = \frac{-1 + i\sqrt{3}}{2} \] ### Final Result Thus, the value of \(\frac{\alpha}{\beta}\) is: \[ \frac{\alpha}{\beta} = \frac{-1 + i\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation x^(2)-2x+4=0, then alpha^(9)+beta^(9) is equal to

If alpha,beta are the roots of x^(2)-2x+4=0 ,then (alpha)/(beta) equal to (1)/(2)(-1+-sqrt(3)i) .

If alpha and beta are the roots of x^(2)-2x+4=0 then the value of alpha^(6)+beta^(6) is

If alpha,beta are the roots of x^(2)-2x+4=0 then alpha^(n)+beta^(n) is

If alpha and beta are the roots of 2x^(2) - x - 2 = 0 , then (alpha^(3) + beta^(-3) + 2alpha^(-1) beta^(-1)) is equal to

Suppose alpha , beta are roots of x^(2) - 2x + 4 = 0 If alpha^(4) + beta^(4) = k , then |k| is equal to ______

If alpha,beta are the roots of x^(2)+x+1=0 ,then (alpha)/(beta)+(beta)/(alpha)=

If alpha,beta are the roots of x^(2)-2x+4=0 then alpha^(5)+beta^(5)=

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If 1;w;w^2 are cube root of unity and n is a positive integer;then 1+w...

    Text Solution

    |

  2. If n is a multiple of 3, then 1 + omega ^(n) + omega ^(2n) =

    Text Solution

    |

  3. If alpha , beta are the roots of x^(2) - 2 x + 4 = 0 " then " (alph...

    Text Solution

    |

  4. If g(x) and h(x) are two polynomials such that the polynomials P(x)=g(...

    Text Solution

    |

  5. If alpha , beta are complex cube roots of unity and x = a + b, y = ...

    Text Solution

    |

  6. If a+b+c=0 and omega,omega^2 are imaginary cube roots of unity, then (...

    Text Solution

    |

  7. If omega is a cube root of unity but not equal to 1, then minimum valu...

    Text Solution

    |

  8. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  9. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  10. If omega pm 1 is a cube root of unity, the value of (a + b omega + c o...

    Text Solution

    |

  11. If alpha, beta, gamma are the cube roots of p, p lt 0 then for an...

    Text Solution

    |

  12. If alpha , beta , gamma are cube roots of p lt 0, then for any x , y,...

    Text Solution

    |

  13. The value |(1 + omega,omega^(2),-omega),(1 + omega^(2),omega,-omega^(...

    Text Solution

    |

  14. If omega is imaginary cube root of unity then Delta = |(1,1 + i ...

    Text Solution

    |

  15. |(6i,-3i,1),(4,3i,-1),(20,3,i)| = x + iy then (x,y) is

    Text Solution

    |

  16. If alpha is a root of x^(4) - 1 = 0 with negative principal argum...

    Text Solution

    |

  17. If omega be complex cube root of unity satisfying the equation (1 )/...

    Text Solution

    |

  18. If 1 , omega, omega^(2), . . . omega^(n - 1) are the n, nth roots of ...

    Text Solution

    |

  19. If alpha is an n th root of unity other than unity itself, then the ...

    Text Solution

    |

  20. If omega is an imaginary fifth root of unity, then find the value of l...

    Text Solution

    |