Home
Class 12
MATHS
If alpha , beta are complex cube roots...

If ` alpha , beta ` are complex cube roots of unity and ` x = a + b, y = a alpha + b beta , z = a beta + b alpha `, then xyz =

A

`(a + b^(3))`

B

` a^(3) + b^(3)`

C

` (a - b)^(3)`

D

` a^(3) - b^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product \( xyz \) given the definitions of \( x, y, z \) in terms of complex cube roots of unity \( \alpha \) and \( \beta \). ### Step-by-Step Solution: 1. **Identify the complex cube roots of unity:** The complex cube roots of unity are given by: \[ \alpha = \omega, \quad \beta = \omega^2 \] where \( \omega = e^{2\pi i / 3} \) and \( \omega^2 = e^{4\pi i / 3} \). We know that: \[ 1 + \omega + \omega^2 = 0 \quad \text{and} \quad \omega^3 = 1 \] 2. **Substitute the values of \( x, y, z \):** Given: \[ x = a + b, \quad y = a\alpha + b\beta = a\omega + b\omega^2, \quad z = a\beta + b\alpha = a\omega^2 + b\omega \] 3. **Calculate \( xyz \):** We can express \( xyz \) as: \[ xyz = (a + b)(a\omega + b\omega^2)(a\omega^2 + b\omega) \] 4. **Simplify \( (a\omega + b\omega^2)(a\omega^2 + b\omega) \):** Let's expand this product: \[ (a\omega + b\omega^2)(a\omega^2 + b\omega) = a^2\omega^3 + ab(\omega + \omega^2) + b^2\omega^3 \] Since \( \omega^3 = 1 \): \[ = a^2 + b^2 + ab(\omega + \omega^2) \] Using \( \omega + \omega^2 = -1 \): \[ = a^2 + b^2 - ab \] 5. **Combine everything:** Now substituting back into \( xyz \): \[ xyz = (a + b)(a^2 + b^2 - ab) \] 6. **Final expression:** We can express \( a^2 + b^2 - ab \) in a different form: \[ a^2 + b^2 - ab = \frac{(a+b)^2 - ab}{2} \] Thus: \[ xyz = (a + b)(a^2 + b^2 - ab) = (a + b)\left(\frac{(a+b)^2 - ab}{2}\right) \] 7. **Using the identity for cubes:** We know that: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Therefore: \[ xyz = a^3 + b^3 \] ### Conclusion: Thus, the final result is: \[ xyz = a^3 + b^3 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the cube roots of p, then for any x,y,z(x alpha+y beta+z gamma)/(x beta+y gamma+z alpha)=

If alpha,beta,gamma are the cube roots of p then for any x,y and z(x alpha+y beta+z gamma)/(x beta+y gamma+z alpha) is

If alpha,beta are the complex cube roots of unity then alpha^(100)+beta^(100)+(1)/(alpha^(100)xx beta^(100))=

If alpha and beta are the complex cube roots of unity, then what is the vlaue of (1+alpha)(1+beta)(1+alpha^(2))(1+beta^(2)) ?

If alpha,beta,gamma are cube roots of of p<0 then for any real x,y,z;(x alpha+y beta+z gamma)/(x beta+y gamma+z alpha)=

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If alpha , beta are the roots of x^(2) - 2 x + 4 = 0 " then " (alph...

    Text Solution

    |

  2. If g(x) and h(x) are two polynomials such that the polynomials P(x)=g(...

    Text Solution

    |

  3. If alpha , beta are complex cube roots of unity and x = a + b, y = ...

    Text Solution

    |

  4. If a+b+c=0 and omega,omega^2 are imaginary cube roots of unity, then (...

    Text Solution

    |

  5. If omega is a cube root of unity but not equal to 1, then minimum valu...

    Text Solution

    |

  6. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  7. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  8. If omega pm 1 is a cube root of unity, the value of (a + b omega + c o...

    Text Solution

    |

  9. If alpha, beta, gamma are the cube roots of p, p lt 0 then for an...

    Text Solution

    |

  10. If alpha , beta , gamma are cube roots of p lt 0, then for any x , y,...

    Text Solution

    |

  11. The value |(1 + omega,omega^(2),-omega),(1 + omega^(2),omega,-omega^(...

    Text Solution

    |

  12. If omega is imaginary cube root of unity then Delta = |(1,1 + i ...

    Text Solution

    |

  13. |(6i,-3i,1),(4,3i,-1),(20,3,i)| = x + iy then (x,y) is

    Text Solution

    |

  14. If alpha is a root of x^(4) - 1 = 0 with negative principal argum...

    Text Solution

    |

  15. If omega be complex cube root of unity satisfying the equation (1 )/...

    Text Solution

    |

  16. If 1 , omega, omega^(2), . . . omega^(n - 1) are the n, nth roots of ...

    Text Solution

    |

  17. If alpha is an n th root of unity other than unity itself, then the ...

    Text Solution

    |

  18. If omega is an imaginary fifth root of unity, then find the value of l...

    Text Solution

    |

  19. The product of all n^(th) root of unity is always

    Text Solution

    |

  20. The roots of the cubic equation (z + ab)^(3) = a ^(3) , a ne 0 represe...

    Text Solution

    |