Home
Class 12
MATHS
If alpha, beta, gamma are the cube r...

If ` alpha, beta, gamma ` are the cube roots of ` p, p lt 0` then for any x, y and z
`(x alpha + y beta + z gamma)/( x beta + y gamma + z alpha)` =

A

1

B

`omega`

C

`omega^(2)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{x \alpha + y \beta + z \gamma}{x \beta + y \gamma + z \alpha} \] where \(\alpha, \beta, \gamma\) are the cube roots of \(p\) and \(p < 0\). ### Step 1: Identify the cube roots of \(p\) Given that \(p < 0\), we can express \(p\) in polar form. The cube roots of \(p\) can be expressed as: \[ \alpha = p^{1/3} \text{cis} \left(0\right) = p^{1/3} \] \[ \beta = p^{1/3} \text{cis} \left(\frac{2\pi}{3}\right) = p^{1/3} \omega \] \[ \gamma = p^{1/3} \text{cis} \left(\frac{4\pi}{3}\right) = p^{1/3} \omega^2 \] where \(\omega = e^{2\pi i / 3}\) is the primitive cube root of unity. ### Step 2: Substitute the values into the expression Now we substitute \(\alpha\), \(\beta\), and \(\gamma\) into the expression: \[ \frac{x \alpha + y \beta + z \gamma}{x \beta + y \gamma + z \alpha} = \frac{x p^{1/3} + y (p^{1/3} \omega) + z (p^{1/3} \omega^2)}{x (p^{1/3} \omega) + y (p^{1/3} \omega^2) + z p^{1/3}} \] ### Step 3: Factor out \(p^{1/3}\) We can factor \(p^{1/3}\) out of both the numerator and denominator: \[ = \frac{p^{1/3} \left(x + y \omega + z \omega^2\right)}{p^{1/3} \left(x \omega + y \omega^2 + z\right)} \] This simplifies to: \[ = \frac{x + y \omega + z \omega^2}{x \omega + y \omega^2 + z} \] ### Step 4: Use properties of cube roots of unity Recall that \(1 + \omega + \omega^2 = 0\). We can multiply the numerator and denominator by \(\omega^2\): \[ = \frac{\omega^2 (x + y \omega + z \omega^2)}{\omega^2 (x \omega + y \omega^2 + z)} = \frac{\omega^2 x + \omega^3 y + \omega^4 z}{\omega^3 x + \omega^4 y + \omega^2 z} \] Since \(\omega^3 = 1\) and \(\omega^4 = \omega\), we have: \[ = \frac{\omega^2 x + y + \omega z}{x + \omega y + \omega^2 z} \] ### Step 5: Simplify the expression Notice that the numerator and denominator are now equal: \[ = \frac{\omega^2 x + y + \omega z}{x + \omega y + \omega^2 z} = \omega^2 \] Thus, the final result is: \[ \frac{x \alpha + y \beta + z \gamma}{x \beta + y \gamma + z \alpha} = \omega^2 \] ### Final Answer \(\omega^2\)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the cube roots of p then for any x,y and z(x alpha+y beta+z gamma)/(x beta+y gamma+z alpha) is

If alpha,beta,gamma are the cube roots of p, then for any x,y,z(x alpha+y beta+z gamma)/(x beta+y gamma+z alpha)=

If alpha,beta,gamma are the cube roots of p(p<0) then for any x,y and z,quad (x+y beta+z gamma)/(x beta+y gamma+z alpha)=(1)/(2)(-1-i sqrt(3))(b)(1)/(2)(1+i sqrt(3))(1)/(2)(1-i sqrt(3)) (d) None of these

If alpha,beta,gamma are cube roots of of p<0 then for any real x,y,z;(x alpha+y beta+z gamma)/(x beta+y gamma+z alpha)=

If alpha , beta , gamma are cube roots of p lt 0 , then for any x , y,z (alpha^(2)x^(2)+beta^(2)y^(2)+gamma^(2)z^(2))/(beta^(2)x^(2) + gamma^(2)y^(2) + alpha^(2)z^(2)) is

If alpha, beta, gamma are the roots of ax ^ (3) + bx ^ (2) + cx + d = 0 and det [[alpha, beta, gammabeta, gamma, alphagamma, alpha, beta]] = 0, alpha ! = beta! = gamma, alpha + beta-gamma, beta + gamma-alpha, and gamma + alpha-beta

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  2. If omega pm 1 is a cube root of unity, the value of (a + b omega + c o...

    Text Solution

    |

  3. If alpha, beta, gamma are the cube roots of p, p lt 0 then for an...

    Text Solution

    |

  4. If alpha , beta , gamma are cube roots of p lt 0, then for any x , y,...

    Text Solution

    |

  5. The value |(1 + omega,omega^(2),-omega),(1 + omega^(2),omega,-omega^(...

    Text Solution

    |

  6. If omega is imaginary cube root of unity then Delta = |(1,1 + i ...

    Text Solution

    |

  7. |(6i,-3i,1),(4,3i,-1),(20,3,i)| = x + iy then (x,y) is

    Text Solution

    |

  8. If alpha is a root of x^(4) - 1 = 0 with negative principal argum...

    Text Solution

    |

  9. If omega be complex cube root of unity satisfying the equation (1 )/...

    Text Solution

    |

  10. If 1 , omega, omega^(2), . . . omega^(n - 1) are the n, nth roots of ...

    Text Solution

    |

  11. If alpha is an n th root of unity other than unity itself, then the ...

    Text Solution

    |

  12. If omega is an imaginary fifth root of unity, then find the value of l...

    Text Solution

    |

  13. The product of all n^(th) root of unity is always

    Text Solution

    |

  14. The roots of the cubic equation (z + ab)^(3) = a ^(3) , a ne 0 represe...

    Text Solution

    |

  15. If If 1, alpha(1), alpha(2), alpha(3) , . . . alpha(n - 1) are the n...

    Text Solution

    |

  16. If beta ne 1 be any nth root of unity, then 1 + 3 beta + 5 beta ^...

    Text Solution

    |

  17. If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the va...

    Text Solution

    |

  18. If p is a multiple of n , then the sum of pth powers of nth roots of u...

    Text Solution

    |

  19. If p is not a multiple of n, then the sum of pth powers of nth root...

    Text Solution

    |

  20. If alpha (1), alpha(2), . . . alpha (100) are all the 100 th roots of...

    Text Solution

    |