Home
Class 12
MATHS
The value |(1 + omega,omega^(2),-omega)...

The value `|(1 + omega,omega^(2),-omega),(1 + omega^(2),omega,-omega^(2)),(omega^(2)+omega,omega,-omega^(2))|` is equal to ( ` omega` is an imaginary cube root of unity)

A

0

B

` 2 omega`

C

` 2 omega^(2)`

D

`- 3 omega^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \begin{vmatrix} 1 + \omega & \omega^2 & -\omega \\ 1 + \omega^2 & \omega & -\omega^2 \\ \omega^2 + \omega & \omega & -\omega^2 \end{vmatrix} \] where \(\omega\) is a cube root of unity, we will follow these steps: ### Step 1: Recall properties of \(\omega\) We know that \(\omega^3 = 1\) and \(1 + \omega + \omega^2 = 0\). From this, we can express \(\omega^2\) as \(-1 - \omega\). ### Step 2: Expand the determinant We will expand the determinant along the first row: \[ D = (1 + \omega) \begin{vmatrix} \omega & -\omega^2 \\ \omega & -\omega^2 \end{vmatrix} - \omega^2 \begin{vmatrix} 1 + \omega^2 & -\omega^2 \\ \omega^2 + \omega & -\omega^2 \end{vmatrix} - (-\omega) \begin{vmatrix} 1 + \omega^2 & \omega \\ \omega^2 + \omega & \omega \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants 1. The first 2x2 determinant is: \[ \begin{vmatrix} \omega & -\omega^2 \\ \omega & -\omega^2 \end{vmatrix} = \omega(-\omega^2) - (-\omega^2)(\omega) = -\omega^3 + \omega^3 = 0 \] 2. The second 2x2 determinant is: \[ \begin{vmatrix} 1 + \omega^2 & -\omega^2 \\ \omega^2 + \omega & -\omega^2 \end{vmatrix} = (1 + \omega^2)(-\omega^2) - (-\omega^2)(\omega^2 + \omega) \] \[ = -\omega^2 - \omega^4 + \omega^4 + \omega^3 = -\omega^2 + 1 \] 3. The third 2x2 determinant is: \[ \begin{vmatrix} 1 + \omega^2 & \omega \\ \omega^2 + \omega & \omega \end{vmatrix} = (1 + \omega^2)(\omega) - (\omega)(\omega^2 + \omega) \] \[ = \omega + \omega^3 - \omega^3 - \omega^2 = \omega - \omega^2 \] ### Step 4: Substitute back into the determinant Now substituting back, we have: \[ D = (1 + \omega)(0) - \omega^2(-\omega^2 + 1) + \omega(\omega - \omega^2) \] \[ = 0 + \omega^2(\omega^2 - 1) + \omega^2 - \omega^3 \] \[ = \omega^4 - \omega^2 + \omega^2 - 1 = \omega^4 - 1 \] ### Step 5: Simplify using \(\omega^3 = 1\) Since \(\omega^4 = \omega\), we have: \[ D = \omega - 1 \] ### Step 6: Final result Thus, the value of the determinant is: \[ D = -\omega^2 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

What is the value of |{:(" "1-i," "omega^(2)," "-omega),(" "omega^(2)+i," "omega," "-i),(1-2i-omega^(2),omega^(2)-omega,i-omega):}| , where omega is the cube root of unity ?

Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).

The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega)(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2)) , where omega is an imaginary cube root of unity, is

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| where omega is cube root of unity.

What is the value of |(1-i, omega^2,-omega), (omega^2+i,omega,-i), (1-2i-omega^2,omega^2-omega,i-omega)|, where omega is the cube root of unity?

If 1,omega,omega^(2) are cube roots of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) is equal to

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If alpha, beta, gamma are the cube roots of p, p lt 0 then for an...

    Text Solution

    |

  2. If alpha , beta , gamma are cube roots of p lt 0, then for any x , y,...

    Text Solution

    |

  3. The value |(1 + omega,omega^(2),-omega),(1 + omega^(2),omega,-omega^(...

    Text Solution

    |

  4. If omega is imaginary cube root of unity then Delta = |(1,1 + i ...

    Text Solution

    |

  5. |(6i,-3i,1),(4,3i,-1),(20,3,i)| = x + iy then (x,y) is

    Text Solution

    |

  6. If alpha is a root of x^(4) - 1 = 0 with negative principal argum...

    Text Solution

    |

  7. If omega be complex cube root of unity satisfying the equation (1 )/...

    Text Solution

    |

  8. If 1 , omega, omega^(2), . . . omega^(n - 1) are the n, nth roots of ...

    Text Solution

    |

  9. If alpha is an n th root of unity other than unity itself, then the ...

    Text Solution

    |

  10. If omega is an imaginary fifth root of unity, then find the value of l...

    Text Solution

    |

  11. The product of all n^(th) root of unity is always

    Text Solution

    |

  12. The roots of the cubic equation (z + ab)^(3) = a ^(3) , a ne 0 represe...

    Text Solution

    |

  13. If If 1, alpha(1), alpha(2), alpha(3) , . . . alpha(n - 1) are the n...

    Text Solution

    |

  14. If beta ne 1 be any nth root of unity, then 1 + 3 beta + 5 beta ^...

    Text Solution

    |

  15. If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the va...

    Text Solution

    |

  16. If p is a multiple of n , then the sum of pth powers of nth roots of u...

    Text Solution

    |

  17. If p is not a multiple of n, then the sum of pth powers of nth root...

    Text Solution

    |

  18. If alpha (1), alpha(2), . . . alpha (100) are all the 100 th roots of...

    Text Solution

    |

  19. If z = ( sqrt(3) + i)/( 2) then ( z^(101) + i ^(103))^(105) equals

    Text Solution

    |

  20. The square root of 3+4i is

    Text Solution

    |