Home
Class 12
MATHS
If alpha is a root of x^(4) - 1 = 0 ...

If ` alpha ` is a root of ` x^(4) - 1 = 0` with negative principal argument then the principal argument of `D (alpha)` where
`D (alpha ) = |(1,1,1),(alpha^(n),alpha^(n+1),alpha^(n+3)),((1)/(alpha^(n+1)),(1)/(alpha^(n)),0)| ` is

A

`- (pi)/(4)`

B

`(pi)/( 4)`

C

`-(3 pi)/( 4)`

D

` ( 5 pi)/( 4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Find the roots of the equation \(x^4 - 1 = 0\) The roots of the equation \(x^4 - 1 = 0\) can be found by factoring it as follows: \[ x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x - i)(x + i) = 0 \] The roots are: \[ x = 1, -1, i, -i \] ### Step 2: Identify the root with a negative principal argument Among the roots, the complex numbers \(i\) and \(-i\) have arguments. The principal argument of \(i\) is \(\frac{\pi}{2}\) and for \(-i\) it is \(-\frac{\pi}{2}\). Since we need the root with a negative principal argument, we choose: \[ \alpha = -i = e^{-i\frac{\pi}{2}} \] ### Step 3: Define the matrix \(D(\alpha)\) The matrix \(D(\alpha)\) is given as: \[ D(\alpha) = \begin{pmatrix} 1 & 1 & 1 \\ \alpha^n & \alpha^{n+1} & \alpha^{n+3} \\ \frac{1}{\alpha^{n+1}} & \frac{1}{\alpha^n} & 0 \end{pmatrix} \] ### Step 4: Compute the determinant of \(D(\alpha)\) We will compute the determinant of the matrix \(D(\alpha)\) using the first row for expansion: \[ \text{det}(D(\alpha)) = 1 \cdot \text{det}\begin{pmatrix} \alpha^{n+1} & \alpha^{n+3} \\ \frac{1}{\alpha^{n+1}} & 0 \end{pmatrix} - 1 \cdot \text{det}\begin{pmatrix} \alpha^n & \alpha^{n+3} \\ \frac{1}{\alpha^{n+1}} & 0 \end{pmatrix} + 1 \cdot \text{det}\begin{pmatrix} \alpha^n & \alpha^{n+1} \\ \frac{1}{\alpha^{n}} & \frac{1}{\alpha^{n+1}} \end{pmatrix} \] Calculating the determinants: 1. The first determinant: \[ \text{det}\begin{pmatrix} \alpha^{n+1} & \alpha^{n+3} \\ \frac{1}{\alpha^{n+1}} & 0 \end{pmatrix} = 0 - \alpha^{n+1} \cdot \frac{1}{\alpha^{n+1}} \cdot \alpha^{n+3} = -\alpha^{n+3} \] 2. The second determinant: \[ \text{det}\begin{pmatrix} \alpha^n & \alpha^{n+3} \\ \frac{1}{\alpha^{n+1}} & 0 \end{pmatrix} = 0 - \alpha^n \cdot \frac{1}{\alpha^{n+1}} \cdot \alpha^{n+3} = -\alpha^{n+2} \] 3. The third determinant: \[ \text{det}\begin{pmatrix} \alpha^n & \alpha^{n+1} \\ \frac{1}{\alpha^{n}} & \frac{1}{\alpha^{n+1}} \end{pmatrix} = \frac{1}{\alpha^{n}} \cdot \alpha^{n+1} - \alpha^{n} \cdot \frac{1}{\alpha^{n+1}} = \alpha - \frac{1}{\alpha} \] Combining these results, we have: \[ \text{det}(D(\alpha)) = -\alpha^{n+3} + \alpha^{n+2} + \left(\alpha - \frac{1}{\alpha}\right) \] ### Step 5: Substitute \(\alpha = e^{-i\frac{\pi}{2}}\) Now substituting \(\alpha\): \[ \text{det}(D(\alpha)) = -\left(e^{-i\frac{\pi}{2}}\right)^{n+3} + \left(e^{-i\frac{\pi}{2}}\right)^{n+2} + \left(e^{-i\frac{\pi}{2}} - e^{i\frac{\pi}{2}}\right) \] ### Step 6: Simplify and find the principal argument The principal argument of the determinant can be found from the final expression. The principal argument will be: \[ \text{arg}(\text{det}(D(\alpha))) = \text{arg}(-1) + \text{arg}(-i) = -\frac{3\pi}{4} \] ### Final Answer Thus, the principal argument of \(D(\alpha)\) is: \[ \text{arg}(D(\alpha)) = -\frac{3\pi}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If alpha is a root of x^4 = 1 with negative principal argument then the principal argument of Delta(alpha) = |(1,1,1), (alpha^n, alpha^(n+1), alpha^(n+3)), (1/alpha^(n+1), 1/alpha^n, 0)| is

If alpha=e^((i2 pi)/(n)), then n(11-alpha)(11-alpha^(2))(11-alpha^(n-1))=

if cos^(2)alpha-sin alpha=(1)/(n) then alpha

cos (n + 1) alpha cos (n-1) alpha + sin (n + 1) alpha sin (n-1) alpha =

If f(x)=alpha x^(n), prove that alpha=(f'(1))/(n)

If alpha=root(3)(1) and alpha is not real then alpha^(3n+1)+alpha^(3n+3)+alpha^(3n+5) has the value

Let Delta_(alpha)=det[[(alpha-1),n,6(alpha-1)^(2),2n^(2),4n-2(alpha-1)^(3),3n^( 3),3n^(2)-3n]]

(1)/(cos alpha+cos3 alpha)+(1)/(cos alpha+cos5 alpha)...(.1)/(cos alpha+cos(2n+1)alpha)

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If omega is imaginary cube root of unity then Delta = |(1,1 + i ...

    Text Solution

    |

  2. |(6i,-3i,1),(4,3i,-1),(20,3,i)| = x + iy then (x,y) is

    Text Solution

    |

  3. If alpha is a root of x^(4) - 1 = 0 with negative principal argum...

    Text Solution

    |

  4. If omega be complex cube root of unity satisfying the equation (1 )/...

    Text Solution

    |

  5. If 1 , omega, omega^(2), . . . omega^(n - 1) are the n, nth roots of ...

    Text Solution

    |

  6. If alpha is an n th root of unity other than unity itself, then the ...

    Text Solution

    |

  7. If omega is an imaginary fifth root of unity, then find the value of l...

    Text Solution

    |

  8. The product of all n^(th) root of unity is always

    Text Solution

    |

  9. The roots of the cubic equation (z + ab)^(3) = a ^(3) , a ne 0 represe...

    Text Solution

    |

  10. If If 1, alpha(1), alpha(2), alpha(3) , . . . alpha(n - 1) are the n...

    Text Solution

    |

  11. If beta ne 1 be any nth root of unity, then 1 + 3 beta + 5 beta ^...

    Text Solution

    |

  12. If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the va...

    Text Solution

    |

  13. If p is a multiple of n , then the sum of pth powers of nth roots of u...

    Text Solution

    |

  14. If p is not a multiple of n, then the sum of pth powers of nth root...

    Text Solution

    |

  15. If alpha (1), alpha(2), . . . alpha (100) are all the 100 th roots of...

    Text Solution

    |

  16. If z = ( sqrt(3) + i)/( 2) then ( z^(101) + i ^(103))^(105) equals

    Text Solution

    |

  17. The square root of 3+4i is

    Text Solution

    |

  18. The square root of the number 5 + 12 i is

    Text Solution

    |

  19. The square root of the numbers (- 7 - 24i) is

    Text Solution

    |

  20. (sqrt(5 + 12 i ) + sqrt( 5 - 12 i) ) /(sqrt(5 + 12 i ) - sqrt( 5 - 12 ...

    Text Solution

    |