Home
Class 12
MATHS
If If 1, alpha(1), alpha(2), alpha(3) ,...

If If ` 1, alpha_(1), alpha_(2), alpha_(3) , . . . alpha_(n - 1)` are the n nth roots of unity and n is odd or even natural numbers, then `(1 + alpha_(1)) (1 + alpha_(2)) . . . ( 1 = alpha _(n- 1)) ` equals

A

1

B

`-1`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the product \( (1 + \alpha_1)(1 + \alpha_2) \cdots (1 + \alpha_{n-1}) \) where \( 1, \alpha_1, \alpha_2, \ldots, \alpha_{n-1} \) are the \( n \)-th roots of unity. ### Step-by-Step Solution: 1. **Understanding the Roots of Unity**: The \( n \)-th roots of unity are given by the equation \( z^n = 1 \). The solutions to this equation are: \[ z = 1, \alpha_1, \alpha_2, \ldots, \alpha_{n-1} \] where \( \alpha_k = e^{2\pi i k/n} \) for \( k = 0, 1, 2, \ldots, n-1 \). 2. **Factoring the Polynomial**: The polynomial whose roots are the \( n \)-th roots of unity can be expressed as: \[ z^n - 1 = (z - 1)(z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_{n-1}) \] 3. **Finding the Product**: We want to evaluate the product \( (1 + \alpha_1)(1 + \alpha_2) \cdots (1 + \alpha_{n-1}) \). This can be rewritten in terms of the polynomial: \[ P(z) = z^n - 1 \] We can find this product by substituting \( z = -1 \): \[ P(-1) = (-1)^n - 1 \] 4. **Calculating \( P(-1) \)**: - If \( n \) is even, \( (-1)^n = 1 \), so: \[ P(-1) = 1 - 1 = 0 \] - If \( n \) is odd, \( (-1)^n = -1 \), so: \[ P(-1) = -1 - 1 = -2 \] 5. **Relating \( P(-1) \) to the Product**: We can relate \( P(-1) \) to the product we want: \[ P(-1) = (-1 - \alpha_1)(-1 - \alpha_2) \cdots (-1 - \alpha_{n-1}) = (-1)^{n-1} (1 + \alpha_1)(1 + \alpha_2) \cdots (1 + \alpha_{n-1}) \] Therefore: \[ (1 + \alpha_1)(1 + \alpha_2) \cdots (1 + \alpha_{n-1}) = \frac{P(-1)}{(-1)^{n-1}} \] 6. **Final Evaluation**: - For even \( n \): \[ (1 + \alpha_1)(1 + \alpha_2) \cdots (1 + \alpha_{n-1}) = \frac{0}{(-1)^{n-1}} = 0 \] - For odd \( n \): \[ (1 + \alpha_1)(1 + \alpha_2) \cdots (1 + \alpha_{n-1}) = \frac{-2}{(-1)^{n-1}} = 2 \] ### Conclusion: Thus, the final result is: - If \( n \) is even, the product equals \( 0 \). - If \( n \) is odd, the product equals \( 2 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

if alpha_(1),alpha_(2),.... alpha_(8) are the 8 th roots of unity then:

If 1,alpha_(1),alpha_(2),…………….,alpha_(n-1) are n^(th) roots of unity and n is an even natural number, then (1+alpha_(1))(1+alpha_(2))(1+alpha_(3))……(1+alpha_(n-1)) equals

If n>=3 and 1,alpha_(1),alpha_(2),alpha_(3)...alpha_(n-1) are the n, nth roots of unity then find the value of sum_(1<=i

If 1,alpha_(1),alpha_(2),alpha_(3),alpha_(4) are the fifth roots of unity then sum_(i=1)^(4)(1)/(2-alpha_(i))=

If 1, alpha_(1), alpha_(2), alpha_(3),…….,alpha_(s) are ninth roots of unity (taken in counter -clockwise sequence in the Argard plane). Then find the value of |(2-alpha_(1))(2-alpha_(3)),(2-alpha_(5))(2-alpha_(7)) |.

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If alpha_(1), alpha_(2), …….., alpha_(n) are the n,n^(th) roots of unity, alpha_(r )=e (i2(r-1)pi)/(n), r=1,2,…n then ""^(n)C_(1)alpha_(1)+""^(n)C_(2)alpha_(2)+…..+""^(n)C_(n)alpha_(n) is equal to :

If 1,alpha_(1),alpha_(2),………..,alpha_(n-1) are nk^(th) roots of unity, then the value of (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))……(1-alpha_(n-1)) is equal to

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. The product of all n^(th) root of unity is always

    Text Solution

    |

  2. The roots of the cubic equation (z + ab)^(3) = a ^(3) , a ne 0 represe...

    Text Solution

    |

  3. If If 1, alpha(1), alpha(2), alpha(3) , . . . alpha(n - 1) are the n...

    Text Solution

    |

  4. If beta ne 1 be any nth root of unity, then 1 + 3 beta + 5 beta ^...

    Text Solution

    |

  5. If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the va...

    Text Solution

    |

  6. If p is a multiple of n , then the sum of pth powers of nth roots of u...

    Text Solution

    |

  7. If p is not a multiple of n, then the sum of pth powers of nth root...

    Text Solution

    |

  8. If alpha (1), alpha(2), . . . alpha (100) are all the 100 th roots of...

    Text Solution

    |

  9. If z = ( sqrt(3) + i)/( 2) then ( z^(101) + i ^(103))^(105) equals

    Text Solution

    |

  10. The square root of 3+4i is

    Text Solution

    |

  11. The square root of the number 5 + 12 i is

    Text Solution

    |

  12. The square root of the numbers (- 7 - 24i) is

    Text Solution

    |

  13. (sqrt(5 + 12 i ) + sqrt( 5 - 12 i) ) /(sqrt(5 + 12 i ) - sqrt( 5 - 12 ...

    Text Solution

    |

  14. If ( sqrt(3) + i) ^(100) = 2^(99) (a + ib) , " then " a^(2) + b^(2) i...

    Text Solution

    |

  15. If ( sqrt(3) + i) ^(100) = 2 ^(99) (a + i b) then b =

    Text Solution

    |

  16. If ( sqrt( 3) + i) ^(10) = a + ib then, a and b are respectively

    Text Solution

    |

  17. The solution of the equation (1 + i sqrt(3))^(x) = 2^(x) are in

    Text Solution

    |

  18. If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

    Text Solution

    |

  19. Sum of sixth power of the roots of the equation t^(2) - 2t + 4 = 0 i...

    Text Solution

    |

  20. (1 + i) ^(8) + (1 - i) ^(8) =

    Text Solution

    |