Home
Class 12
MATHS
If beta ne 1 be any nth root of unit...

If ` beta ne 1 ` be any nth root of unity, then ` 1 + 3 beta + 5 beta ^(2) + . . . n` terms equals

A

`(2 n)/( 1 - beta)`

B

` - (2 beta)/( 1 - beta)`

C

` - (2 n)/( ( 1- beta)^(2))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the series \( S = 1 + 3\beta + 5\beta^2 + \ldots + (2n - 1)\beta^{n-1} \), where \( \beta \) is an nth root of unity and \( \beta \neq 1 \). ### Step-by-step Solution: 1. **Define the Series**: Let \( S = 1 + 3\beta + 5\beta^2 + \ldots + (2n - 1)\beta^{n-1} \). 2. **Multiply by \( \beta \)**: Multiply the entire series by \( \beta \): \[ \beta S = \beta + 3\beta^2 + 5\beta^3 + \ldots + (2n - 1)\beta^n \] 3. **Rearranging Terms**: Notice that the last term in \( \beta S \) is \( (2n - 1)\beta^n \). Since \( \beta^n = 1 \) for any nth root of unity, we can rewrite it as: \[ \beta S = \beta + 3\beta^2 + 5\beta^3 + \ldots + (2n - 1) \] 4. **Subtracting the Two Equations**: Now subtract \( \beta S \) from \( S \): \[ S - \beta S = (1 - \beta) + (3 - 3\beta)\beta + (5 - 5\beta^2)\beta^2 + \ldots + (2n - 1 - (2n - 1)\beta^{n-1}) \] This simplifies to: \[ S(1 - \beta) = 1 + 2\beta + 2\beta^2 + \ldots + 2\beta^{n-1} \] 5. **Recognizing a Geometric Series**: The right-hand side is a geometric series with first term \( 1 \) and common ratio \( \beta \): \[ 1 + 2\beta + 2\beta^2 + \ldots + 2\beta^{n-1} = 1 + 2\left(\frac{1 - \beta^{n}}{1 - \beta}\right) \] Since \( \beta^n = 1 \): \[ = 1 + 2\left(\frac{1 - 1}{1 - \beta}\right) = 1 \] 6. **Final Equation**: Thus, we have: \[ S(1 - \beta) = 1 \] Therefore, \[ S = \frac{1}{1 - \beta} \] ### Conclusion: The sum of the series \( S = 1 + 3\beta + 5\beta^2 + \ldots + (2n - 1)\beta^{n-1} \) is given by: \[ S = \frac{1}{1 - \beta} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If alpha(!=1) is a nth root of unity then S=1+3 alpha+5 alpha^(2)+......... upto n terms is equal to

If a and b are imaginary cube roots of unity, then alpha^(n)+beta^(n) is equal to

(i) If alpha,beta be the imaginary cube root of unity, then show that alpha^(4)+beta^(4)+alpha^(-1)beta^(-1)=0

Let alpha and beta be the roots of x^(2)-5x+3=0 with alpha gt beta . If a_(n) = a^(n)-beta^(n) for n ge1 , then the value of (3a_(6)+a_(8))/(a_(7)) is :

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. The roots of the cubic equation (z + ab)^(3) = a ^(3) , a ne 0 represe...

    Text Solution

    |

  2. If If 1, alpha(1), alpha(2), alpha(3) , . . . alpha(n - 1) are the n...

    Text Solution

    |

  3. If beta ne 1 be any nth root of unity, then 1 + 3 beta + 5 beta ^...

    Text Solution

    |

  4. If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the va...

    Text Solution

    |

  5. If p is a multiple of n , then the sum of pth powers of nth roots of u...

    Text Solution

    |

  6. If p is not a multiple of n, then the sum of pth powers of nth root...

    Text Solution

    |

  7. If alpha (1), alpha(2), . . . alpha (100) are all the 100 th roots of...

    Text Solution

    |

  8. If z = ( sqrt(3) + i)/( 2) then ( z^(101) + i ^(103))^(105) equals

    Text Solution

    |

  9. The square root of 3+4i is

    Text Solution

    |

  10. The square root of the number 5 + 12 i is

    Text Solution

    |

  11. The square root of the numbers (- 7 - 24i) is

    Text Solution

    |

  12. (sqrt(5 + 12 i ) + sqrt( 5 - 12 i) ) /(sqrt(5 + 12 i ) - sqrt( 5 - 12 ...

    Text Solution

    |

  13. If ( sqrt(3) + i) ^(100) = 2^(99) (a + ib) , " then " a^(2) + b^(2) i...

    Text Solution

    |

  14. If ( sqrt(3) + i) ^(100) = 2 ^(99) (a + i b) then b =

    Text Solution

    |

  15. If ( sqrt( 3) + i) ^(10) = a + ib then, a and b are respectively

    Text Solution

    |

  16. The solution of the equation (1 + i sqrt(3))^(x) = 2^(x) are in

    Text Solution

    |

  17. If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

    Text Solution

    |

  18. Sum of sixth power of the roots of the equation t^(2) - 2t + 4 = 0 i...

    Text Solution

    |

  19. (1 + i) ^(8) + (1 - i) ^(8) =

    Text Solution

    |

  20. If [ (sqrt(3) // 2 + (1 //2)i)/(sqrt(3) // 2 - (1//2)i)] ^(120) = a +...

    Text Solution

    |