Home
Class 12
MATHS
If z = ( sqrt(3) + i)/( 2) then ( z^(1...

If ` z = ( sqrt(3) + i)/( 2)` then `( z^(101) + i ^(103))^(105)` equals

A

z

B

`z^(2)`

C

`z^(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the complex number \( z = \frac{\sqrt{3} + i}{2} \). We need to find the value of \( (z^{101} + i^{103})^{105} \). ### Step-by-Step Solution: 1. **Express \( z \) in polar form**: \[ z = \frac{\sqrt{3}}{2} + \frac{1}{2} i \] The modulus \( r \) of \( z \) is given by: \[ r = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = \sqrt{1} = 1 \] The argument \( \theta \) is: \[ \theta = \tan^{-1}\left(\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Therefore, we can express \( z \) as: \[ z = e^{i\frac{\pi}{6}} \] 2. **Calculate \( z^{101} \)**: \[ z^{101} = \left(e^{i\frac{\pi}{6}}\right)^{101} = e^{i\frac{101\pi}{6}} \] 3. **Simplify \( \frac{101\pi}{6} \)**: To simplify \( \frac{101\pi}{6} \), we can subtract multiples of \( 2\pi \): \[ \frac{101\pi}{6} = \frac{101\pi}{6} - 16\pi = \frac{101\pi - 96\pi}{6} = \frac{5\pi}{6} \] Thus, \[ z^{101} = e^{i\frac{5\pi}{6}} \] 4. **Calculate \( i^{103} \)**: Recall that \( i = e^{i\frac{\pi}{2}} \), so: \[ i^{103} = \left(e^{i\frac{\pi}{2}}\right)^{103} = e^{i\frac{103\pi}{2}} \] Simplifying \( \frac{103\pi}{2} \): \[ \frac{103\pi}{2} = \frac{103\pi}{2} - 51\pi = \frac{103\pi - 102\pi}{2} = \frac{\pi}{2} \] Thus, \[ i^{103} = e^{i\frac{\pi}{2}} \] 5. **Combine \( z^{101} \) and \( i^{103} \)**: \[ z^{101} + i^{103} = e^{i\frac{5\pi}{6}} + e^{i\frac{\pi}{2}} \] 6. **Find a common representation**: To add these, we can convert them to rectangular form: \[ e^{i\frac{5\pi}{6}} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i \] \[ e^{i\frac{\pi}{2}} = 0 + 1i \] Therefore, \[ z^{101} + i^{103} = \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i + i\right) = -\frac{\sqrt{3}}{2} + \frac{3}{2}i \] 7. **Calculate \( (z^{101} + i^{103})^{105} \)**: We need to find the modulus and argument of \( -\frac{\sqrt{3}}{2} + \frac{3}{2}i \): \[ r = \sqrt{\left(-\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{3}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{9}{4}} = \sqrt{3} \] The argument \( \theta \) is: \[ \theta = \tan^{-1}\left(\frac{\frac{3}{2}}{-\frac{\sqrt{3}}{2}}\right) = \tan^{-1}\left(-\frac{3}{\sqrt{3}}\right) = -\frac{\pi}{3} + \pi = \frac{2\pi}{3} \] Thus, we can express it as: \[ -\frac{\sqrt{3}}{2} + \frac{3}{2}i = \sqrt{3} e^{i\frac{2\pi}{3}} \] 8. **Raise to the power of 105**: \[ (z^{101} + i^{103})^{105} = \left(\sqrt{3} e^{i\frac{2\pi}{3}}\right)^{105} = (\sqrt{3})^{105} e^{i\frac{210\pi}{3}} = 3^{52.5} e^{i70\pi} \] Since \( e^{i70\pi} = e^{i0} = 1 \): \[ (z^{101} + i^{103})^{105} = 3^{52.5} \] ### Final Answer: \[ (z^{101} + i^{103})^{105} = 3^{52.5} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If z=(sqrt(3+i))/(2)( where i=sqrt(-1)) then (z^(101)+i^(103))^(105) is equal to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z= (sqrt3-i)/2 , " then " (i^(101)+z^(101))^(103) erqual

Let z = (1)/(2) (sqrt(3) + i),"then" |(z^(101)+i^(103))^(105)| = ________.

If z=i log(2-sqrt(-3)), then cos z=

If z = i(i + sqrt(2)) , then value of z^(4) + 4z^(3) + 6z^(2) + 4z is

If Z=i log(2-sqrt(3)), then cos(Z)=

If z=sqrt(2i), then z is equal to

If z=((1+i sqrt(3))/(1+i))^(25), then arg(z) is equal to

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If p is not a multiple of n, then the sum of pth powers of nth root...

    Text Solution

    |

  2. If alpha (1), alpha(2), . . . alpha (100) are all the 100 th roots of...

    Text Solution

    |

  3. If z = ( sqrt(3) + i)/( 2) then ( z^(101) + i ^(103))^(105) equals

    Text Solution

    |

  4. The square root of 3+4i is

    Text Solution

    |

  5. The square root of the number 5 + 12 i is

    Text Solution

    |

  6. The square root of the numbers (- 7 - 24i) is

    Text Solution

    |

  7. (sqrt(5 + 12 i ) + sqrt( 5 - 12 i) ) /(sqrt(5 + 12 i ) - sqrt( 5 - 12 ...

    Text Solution

    |

  8. If ( sqrt(3) + i) ^(100) = 2^(99) (a + ib) , " then " a^(2) + b^(2) i...

    Text Solution

    |

  9. If ( sqrt(3) + i) ^(100) = 2 ^(99) (a + i b) then b =

    Text Solution

    |

  10. If ( sqrt( 3) + i) ^(10) = a + ib then, a and b are respectively

    Text Solution

    |

  11. The solution of the equation (1 + i sqrt(3))^(x) = 2^(x) are in

    Text Solution

    |

  12. If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

    Text Solution

    |

  13. Sum of sixth power of the roots of the equation t^(2) - 2t + 4 = 0 i...

    Text Solution

    |

  14. (1 + i) ^(8) + (1 - i) ^(8) =

    Text Solution

    |

  15. If [ (sqrt(3) // 2 + (1 //2)i)/(sqrt(3) // 2 - (1//2)i)] ^(120) = a +...

    Text Solution

    |

  16. (-64)^(1//4) is equal to-

    Text Solution

    |

  17. The points representing 3 sqrt(sqrt""5 + isqrt""3) lie

    Text Solution

    |

  18. Given z is a complex number with modulus 1. Then the equation ((1 +...

    Text Solution

    |

  19. If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=...

    Text Solution

    |

  20. ((cos theta + i sin theta)^(4))/( (sin theta + i cos theta)^(5)) is eq...

    Text Solution

    |