Home
Class 12
MATHS
The square root of the number 5 + 12 i i...

The square root of the number `5 + 12 i` is

A

`(3 +2i)`

B

`(3 - 2i)`

C

`pm (3 +2i)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the square root of the complex number \( 5 + 12i \), we can follow these steps: ### Step 1: Assume the square root Let \( z = x + yi \), where \( x \) and \( y \) are real numbers. Then, we have: \[ z^2 = 5 + 12i \] ### Step 2: Expand \( z^2 \) Expanding \( z^2 \) gives: \[ (x + yi)^2 = x^2 + 2xyi - y^2 = (x^2 - y^2) + (2xy)i \] Thus, we can equate the real and imaginary parts: \[ x^2 - y^2 = 5 \quad \text{(1)} \] \[ 2xy = 12 \quad \text{(2)} \] ### Step 3: Solve for \( xy \) From equation (2), we can express \( xy \) as: \[ xy = 6 \quad \text{(3)} \] ### Step 4: Substitute \( y \) in terms of \( x \) From equation (3), we can express \( y \) in terms of \( x \): \[ y = \frac{6}{x} \] ### Step 5: Substitute \( y \) into equation (1) Substituting \( y \) into equation (1): \[ x^2 - \left(\frac{6}{x}\right)^2 = 5 \] This simplifies to: \[ x^2 - \frac{36}{x^2} = 5 \] Multiplying through by \( x^2 \) to eliminate the fraction: \[ x^4 - 5x^2 - 36 = 0 \] ### Step 6: Let \( u = x^2 \) Let \( u = x^2 \). The equation becomes: \[ u^2 - 5u - 36 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ u = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-36)}}{2 \cdot 1} \] \[ u = \frac{5 \pm \sqrt{25 + 144}}{2} \] \[ u = \frac{5 \pm \sqrt{169}}{2} \] \[ u = \frac{5 \pm 13}{2} \] Calculating the two possible values: \[ u = \frac{18}{2} = 9 \quad \text{or} \quad u = \frac{-8}{2} = -4 \] Since \( u = x^2 \) must be non-negative, we take \( u = 9 \). ### Step 8: Find \( x \) Thus, we have: \[ x^2 = 9 \implies x = 3 \text{ or } x = -3 \] ### Step 9: Find \( y \) using \( xy = 6 \) Using \( xy = 6 \): 1. If \( x = 3 \): \[ 3y = 6 \implies y = 2 \] 2. If \( x = -3 \): \[ -3y = 6 \implies y = -2 \] ### Step 10: Write the solutions for \( z \) Thus, we have two possible values for \( z \): \[ z = 3 + 2i \quad \text{and} \quad z = -3 - 2i \] ### Final Answer The square roots of \( 5 + 12i \) are: \[ z = 3 + 2i \quad \text{and} \quad z = -3 - 2i \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

The square root of -8i is

12.Find the square root of the number 7921 by Division method.

The square root of 3+4i is

The square root of (1+i) is

The square root of a negative number is irrational.

The square roots of 7+24i are

Property 3 The square root of an even square number is even and that square root of an odd square number is odd.

Square Root of Complex Number

Square root of a rational number

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If z = ( sqrt(3) + i)/( 2) then ( z^(101) + i ^(103))^(105) equals

    Text Solution

    |

  2. The square root of 3+4i is

    Text Solution

    |

  3. The square root of the number 5 + 12 i is

    Text Solution

    |

  4. The square root of the numbers (- 7 - 24i) is

    Text Solution

    |

  5. (sqrt(5 + 12 i ) + sqrt( 5 - 12 i) ) /(sqrt(5 + 12 i ) - sqrt( 5 - 12 ...

    Text Solution

    |

  6. If ( sqrt(3) + i) ^(100) = 2^(99) (a + ib) , " then " a^(2) + b^(2) i...

    Text Solution

    |

  7. If ( sqrt(3) + i) ^(100) = 2 ^(99) (a + i b) then b =

    Text Solution

    |

  8. If ( sqrt( 3) + i) ^(10) = a + ib then, a and b are respectively

    Text Solution

    |

  9. The solution of the equation (1 + i sqrt(3))^(x) = 2^(x) are in

    Text Solution

    |

  10. If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

    Text Solution

    |

  11. Sum of sixth power of the roots of the equation t^(2) - 2t + 4 = 0 i...

    Text Solution

    |

  12. (1 + i) ^(8) + (1 - i) ^(8) =

    Text Solution

    |

  13. If [ (sqrt(3) // 2 + (1 //2)i)/(sqrt(3) // 2 - (1//2)i)] ^(120) = a +...

    Text Solution

    |

  14. (-64)^(1//4) is equal to-

    Text Solution

    |

  15. The points representing 3 sqrt(sqrt""5 + isqrt""3) lie

    Text Solution

    |

  16. Given z is a complex number with modulus 1. Then the equation ((1 +...

    Text Solution

    |

  17. If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=...

    Text Solution

    |

  18. ((cos theta + i sin theta)^(4))/( (sin theta + i cos theta)^(5)) is eq...

    Text Solution

    |

  19. If a^(2)+b^(2)=1, prove that (1+b+ia)/(1+b-ia)=b+ia.

    Text Solution

    |

  20. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |