Home
Class 12
MATHS
The square root of the numbers (- 7 - 2...

The square root of the numbers `(- 7 - 24i)` is

A

(3 +4i)

B

(3-4i)

C

`pm (3 - 4i)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the square root of the complex number \(-7 - 24i\), we can follow these steps: ### Step 1: Set up the equation Let \( z = x + yi \) be the square root of \(-7 - 24i\). Then we have: \[ z^2 = -7 - 24i \] This implies: \[ (x + yi)^2 = -7 - 24i \] ### Step 2: Expand the left side Expanding the left side gives: \[ x^2 + 2xyi - y^2 = -7 - 24i \] This can be separated into real and imaginary parts: \[ (x^2 - y^2) + (2xy)i = -7 - 24i \] ### Step 3: Set up the equations From the real and imaginary parts, we can set up the following equations: 1. \( x^2 - y^2 = -7 \) (Equation 1) 2. \( 2xy = -24 \) (Equation 2) ### Step 4: Solve for \(xy\) From Equation 2, we can express \(xy\): \[ xy = -12 \] ### Step 5: Substitute \(y\) in terms of \(x\) From \(xy = -12\), we can express \(y\) as: \[ y = \frac{-12}{x} \] ### Step 6: Substitute \(y\) into Equation 1 Substituting \(y\) into Equation 1 gives: \[ x^2 - \left(\frac{-12}{x}\right)^2 = -7 \] This simplifies to: \[ x^2 - \frac{144}{x^2} = -7 \] ### Step 7: Multiply through by \(x^2\) To eliminate the fraction, multiply through by \(x^2\): \[ x^4 + 7x^2 - 144 = 0 \] Let \(u = x^2\), then we have: \[ u^2 + 7u - 144 = 0 \] ### Step 8: Solve the quadratic equation Using the quadratic formula \(u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ u = \frac{-7 \pm \sqrt{7^2 + 4 \cdot 144}}{2} \] \[ u = \frac{-7 \pm \sqrt{49 + 576}}{2} \] \[ u = \frac{-7 \pm \sqrt{625}}{2} \] \[ u = \frac{-7 \pm 25}{2} \] Calculating the two possible values: 1. \(u = \frac{18}{2} = 9\) 2. \(u = \frac{-32}{2} = -16\) (not valid since \(u = x^2\) must be non-negative) Thus, \(u = 9\), which means: \[ x^2 = 9 \implies x = 3 \text{ or } x = -3 \] ### Step 9: Find corresponding \(y\) values Using \(xy = -12\): 1. If \(x = 3\), then \(3y = -12 \implies y = -4\). 2. If \(x = -3\), then \(-3y = -12 \implies y = 4\). ### Step 10: Write the square roots Thus, the two square roots of \(-7 - 24i\) are: 1. \(z_1 = 3 - 4i\) 2. \(z_2 = -3 + 4i\) ### Final Answer The square roots of the complex number \(-7 - 24i\) are: \[ 3 - 4i \quad \text{and} \quad -3 + 4i \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

The square root of -8i is

The square root of 3+4i is

The square root of (1+i) is

The square roots of 7+24i are

Square Root of Complex Number

Square root of a rational number

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. The square root of 3+4i is

    Text Solution

    |

  2. The square root of the number 5 + 12 i is

    Text Solution

    |

  3. The square root of the numbers (- 7 - 24i) is

    Text Solution

    |

  4. (sqrt(5 + 12 i ) + sqrt( 5 - 12 i) ) /(sqrt(5 + 12 i ) - sqrt( 5 - 12 ...

    Text Solution

    |

  5. If ( sqrt(3) + i) ^(100) = 2^(99) (a + ib) , " then " a^(2) + b^(2) i...

    Text Solution

    |

  6. If ( sqrt(3) + i) ^(100) = 2 ^(99) (a + i b) then b =

    Text Solution

    |

  7. If ( sqrt( 3) + i) ^(10) = a + ib then, a and b are respectively

    Text Solution

    |

  8. The solution of the equation (1 + i sqrt(3))^(x) = 2^(x) are in

    Text Solution

    |

  9. If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

    Text Solution

    |

  10. Sum of sixth power of the roots of the equation t^(2) - 2t + 4 = 0 i...

    Text Solution

    |

  11. (1 + i) ^(8) + (1 - i) ^(8) =

    Text Solution

    |

  12. If [ (sqrt(3) // 2 + (1 //2)i)/(sqrt(3) // 2 - (1//2)i)] ^(120) = a +...

    Text Solution

    |

  13. (-64)^(1//4) is equal to-

    Text Solution

    |

  14. The points representing 3 sqrt(sqrt""5 + isqrt""3) lie

    Text Solution

    |

  15. Given z is a complex number with modulus 1. Then the equation ((1 +...

    Text Solution

    |

  16. If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=...

    Text Solution

    |

  17. ((cos theta + i sin theta)^(4))/( (sin theta + i cos theta)^(5)) is eq...

    Text Solution

    |

  18. If a^(2)+b^(2)=1, prove that (1+b+ia)/(1+b-ia)=b+ia.

    Text Solution

    |

  19. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  20. The value of sum (k = 1)^(6) ( sin "" ( 2 pi k)/( 7) - i cos "" ( 2 p...

    Text Solution

    |