Home
Class 12
MATHS
If ( sqrt(3) + i) ^(100) = 2^(99) (a + ...

If ` ( sqrt(3) + i) ^(100) = 2^(99) (a + ib) , " then " a^(2) + b^(2)` is equal to

A

`sqrt(2)`

B

4

C

`sqrt(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( a^2 + b^2 \) given that \[ (\sqrt{3} + i)^{100} = 2^{99} (a + ib). \] ### Step 1: Convert \(\sqrt{3} + i\) to polar form First, we find the modulus and argument of \(\sqrt{3} + i\). - The modulus \( r \) is given by: \[ r = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2. \] - The argument \( \theta \) is given by: \[ \theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}. \] Thus, we can express \(\sqrt{3} + i\) in polar form as: \[ \sqrt{3} + i = 2 \left(\cos\frac{\pi}{6} + i \sin\frac{\pi}{6}\right) = 2 e^{i \frac{\pi}{6}}. \] ### Step 2: Raise to the power of 100 Now, we raise this expression to the power of 100: \[ (\sqrt{3} + i)^{100} = (2 e^{i \frac{\pi}{6}})^{100} = 2^{100} e^{i \frac{100\pi}{6}} = 2^{100} e^{i \frac{50\pi}{3}}. \] ### Step 3: Simplify the argument Next, we simplify the argument \( \frac{50\pi}{3} \): \[ \frac{50\pi}{3} = 16\pi + \frac{2\pi}{3} \quad (\text{since } 16\pi = 5 \cdot 2\pi + 6\pi). \] Thus, we can reduce it to: \[ e^{i \frac{50\pi}{3}} = e^{i \frac{2\pi}{3}}. \] ### Step 4: Rewrite the expression Now we can rewrite our expression: \[ (\sqrt{3} + i)^{100} = 2^{100} e^{i \frac{2\pi}{3}}. \] ### Step 5: Express in terms of \( a + ib \) We know from the problem statement that: \[ (\sqrt{3} + i)^{100} = 2^{99} (a + ib). \] Equating both sides gives us: \[ 2^{100} e^{i \frac{2\pi}{3}} = 2^{99} (a + ib). \] Dividing both sides by \( 2^{99} \): \[ 2 e^{i \frac{2\pi}{3}} = a + ib. \] ### Step 6: Find \( a \) and \( b \) Now we can express \( a \) and \( b \): \[ a + ib = 2 \left(\cos\frac{2\pi}{3} + i \sin\frac{2\pi}{3}\right). \] Calculating the cosine and sine: - \( \cos\frac{2\pi}{3} = -\frac{1}{2} \) - \( \sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2} \) Thus, \[ a = 2 \left(-\frac{1}{2}\right) = -1, \] \[ b = 2 \left(\frac{\sqrt{3}}{2}\right) = \sqrt{3}. \] ### Step 7: Calculate \( a^2 + b^2 \) Now we can find \( a^2 + b^2 \): \[ a^2 + b^2 = (-1)^2 + (\sqrt{3})^2 = 1 + 3 = 4. \] ### Final Answer Thus, the value of \( a^2 + b^2 \) is \[ \boxed{4}. \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If (sqrt(3)+i)^(100)=2^(99)(a+ib), then find

If (sqrt3 + i)^(100) = 2^(99) (p + iq) , then p and q are roots of the equation:

If (sqrt(8)+i)^(50)=3^(49)(a+ib), then find the value of a^(2)+b^(2)

Let alpha, beta be the roots of the equation x^2 - sqrt 6 x 3 = 0 such that Im (alpha) >Im (beta) . Let a, b be integers not divisible by 3 and n be a natural number such that frac{alpha^(99)}{beta} alpha^(98) = 3^n (a ib) , i = sqrt(-1) Then n a b is equal to _______.

if (3)/(2+cos theta+i sin theta)=a+ib then (a-2)^(2)+b^(2) equals to:

IF (sqrt(3)+i)^(10)=a+ib, then a and b are respectively

If (1-i alpha)/(1+i alpha)=A+iB then A^(2)+B^(2) is equal to

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. The square root of the numbers (- 7 - 24i) is

    Text Solution

    |

  2. (sqrt(5 + 12 i ) + sqrt( 5 - 12 i) ) /(sqrt(5 + 12 i ) - sqrt( 5 - 12 ...

    Text Solution

    |

  3. If ( sqrt(3) + i) ^(100) = 2^(99) (a + ib) , " then " a^(2) + b^(2) i...

    Text Solution

    |

  4. If ( sqrt(3) + i) ^(100) = 2 ^(99) (a + i b) then b =

    Text Solution

    |

  5. If ( sqrt( 3) + i) ^(10) = a + ib then, a and b are respectively

    Text Solution

    |

  6. The solution of the equation (1 + i sqrt(3))^(x) = 2^(x) are in

    Text Solution

    |

  7. If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

    Text Solution

    |

  8. Sum of sixth power of the roots of the equation t^(2) - 2t + 4 = 0 i...

    Text Solution

    |

  9. (1 + i) ^(8) + (1 - i) ^(8) =

    Text Solution

    |

  10. If [ (sqrt(3) // 2 + (1 //2)i)/(sqrt(3) // 2 - (1//2)i)] ^(120) = a +...

    Text Solution

    |

  11. (-64)^(1//4) is equal to-

    Text Solution

    |

  12. The points representing 3 sqrt(sqrt""5 + isqrt""3) lie

    Text Solution

    |

  13. Given z is a complex number with modulus 1. Then the equation ((1 +...

    Text Solution

    |

  14. If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=...

    Text Solution

    |

  15. ((cos theta + i sin theta)^(4))/( (sin theta + i cos theta)^(5)) is eq...

    Text Solution

    |

  16. If a^(2)+b^(2)=1, prove that (1+b+ia)/(1+b-ia)=b+ia.

    Text Solution

    |

  17. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  18. The value of sum (k = 1)^(6) ( sin "" ( 2 pi k)/( 7) - i cos "" ( 2 p...

    Text Solution

    |

  19. The value of sum (k = 0) ^(10) ( sin "" ( 2 k pi)/(11) + i cos "" (2 ...

    Text Solution

    |

  20. [(1 + sin "" (pi)/( 8) + i cos "" (pi)/( 8))/( 1 + sin "" (pi)/( 8) - ...

    Text Solution

    |