Home
Class 12
MATHS
If ( sqrt(3) + i) ^(100) = 2 ^(99) (a ...

If `( sqrt(3) + i) ^(100) = 2 ^(99)` (a + i b) then b =

A

`sqrt(3)`

B

`sqrt(2)`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( b \) in the expression \( ( \sqrt{3} + i)^{100} = 2^{99} (a + ib) \). ### Step 1: Convert \( \sqrt{3} + i \) to polar form First, we need to express \( \sqrt{3} + i \) in polar form. The modulus \( r \) is given by: \[ r = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \] Next, we find the argument \( \theta \): \[ \theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Thus, we can express \( \sqrt{3} + i \) in polar form as: \[ \sqrt{3} + i = 2 \left( \cos\frac{\pi}{6} + i \sin\frac{\pi}{6} \right) = 2 e^{i \frac{\pi}{6}} \] ### Step 2: Raise to the power of 100 Now, we raise this expression to the power of 100: \[ (\sqrt{3} + i)^{100} = \left(2 e^{i \frac{\pi}{6}}\right)^{100} = 2^{100} e^{i \frac{100\pi}{6}} = 2^{100} e^{i \frac{50\pi}{3}} \] ### Step 3: Simplify the argument Next, we simplify the argument \( \frac{50\pi}{3} \): \[ \frac{50\pi}{3} = 16\pi + \frac{2\pi}{3} \quad (\text{since } 16\pi \text{ is a multiple of } 2\pi) \] Thus, we can write: \[ e^{i \frac{50\pi}{3}} = e^{i \frac{2\pi}{3}} \] ### Step 4: Write in rectangular form Now we can express \( e^{i \frac{2\pi}{3}} \) in rectangular form: \[ e^{i \frac{2\pi}{3}} = \cos\frac{2\pi}{3} + i \sin\frac{2\pi}{3} = -\frac{1}{2} + i \frac{\sqrt{3}}{2} \] ### Step 5: Combine results Now we combine the results: \[ (\sqrt{3} + i)^{100} = 2^{100} \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) = 2^{100} \left(-\frac{1}{2}\right) + 2^{100} \left(i \frac{\sqrt{3}}{2}\right) \] This simplifies to: \[ -2^{99} + i 2^{99} \sqrt{3} \] ### Step 6: Compare with given expression We have: \[ -2^{99} + i 2^{99} \sqrt{3} = 2^{99} (a + ib) \] From this, we can equate the real and imaginary parts: - Real part: \( a = -1 \) - Imaginary part: \( b = \sqrt{3} \) ### Conclusion Thus, the value of \( b \) is: \[ \boxed{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If (sqrt3 + i)^(100) = 2^(99) (p + iq) , then p and q are roots of the equation:

If (sqrt(3)+i)^(100)=2^(99)(a+ib), then find

(sqrt3+i)^100=2^99(p+iq) then p and q are the roots of which of the following quadratic equation?

IF (sqrt(3)+i)^(10)=a+ib, then a and b are respectively

If ((1-i)/(1+i))^(100)=a+ib,f in d(a,b)

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. (sqrt(5 + 12 i ) + sqrt( 5 - 12 i) ) /(sqrt(5 + 12 i ) - sqrt( 5 - 12 ...

    Text Solution

    |

  2. If ( sqrt(3) + i) ^(100) = 2^(99) (a + ib) , " then " a^(2) + b^(2) i...

    Text Solution

    |

  3. If ( sqrt(3) + i) ^(100) = 2 ^(99) (a + i b) then b =

    Text Solution

    |

  4. If ( sqrt( 3) + i) ^(10) = a + ib then, a and b are respectively

    Text Solution

    |

  5. The solution of the equation (1 + i sqrt(3))^(x) = 2^(x) are in

    Text Solution

    |

  6. If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

    Text Solution

    |

  7. Sum of sixth power of the roots of the equation t^(2) - 2t + 4 = 0 i...

    Text Solution

    |

  8. (1 + i) ^(8) + (1 - i) ^(8) =

    Text Solution

    |

  9. If [ (sqrt(3) // 2 + (1 //2)i)/(sqrt(3) // 2 - (1//2)i)] ^(120) = a +...

    Text Solution

    |

  10. (-64)^(1//4) is equal to-

    Text Solution

    |

  11. The points representing 3 sqrt(sqrt""5 + isqrt""3) lie

    Text Solution

    |

  12. Given z is a complex number with modulus 1. Then the equation ((1 +...

    Text Solution

    |

  13. If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=...

    Text Solution

    |

  14. ((cos theta + i sin theta)^(4))/( (sin theta + i cos theta)^(5)) is eq...

    Text Solution

    |

  15. If a^(2)+b^(2)=1, prove that (1+b+ia)/(1+b-ia)=b+ia.

    Text Solution

    |

  16. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  17. The value of sum (k = 1)^(6) ( sin "" ( 2 pi k)/( 7) - i cos "" ( 2 p...

    Text Solution

    |

  18. The value of sum (k = 0) ^(10) ( sin "" ( 2 k pi)/(11) + i cos "" (2 ...

    Text Solution

    |

  19. [(1 + sin "" (pi)/( 8) + i cos "" (pi)/( 8))/( 1 + sin "" (pi)/( 8) - ...

    Text Solution

    |

  20. If [(1 + cos theta + i sin theta)/( sin theta + i (1 + cos theta))] ^...

    Text Solution

    |