Home
Class 12
MATHS
The solution of the equation (1 + i sqr...

The solution of the equation ` (1 + i sqrt(3))^(x) = 2^(x)` are in

A

A.P.

B

G.P.

C

H.P.

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (1 + i \sqrt{3})^x = 2^x \), we will follow these steps: ### Step 1: Convert the complex number to polar form The complex number \( 1 + i \sqrt{3} \) can be expressed in polar form. We first find its modulus and argument. **Modulus**: \[ r = |1 + i \sqrt{3}| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] **Argument**: \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3} \] Thus, we can write: \[ 1 + i \sqrt{3} = 2 \left( \cos\frac{\pi}{3} + i \sin\frac{\pi}{3} \right) \] ### Step 2: Rewrite the equation using polar form Now substituting the polar form into the equation gives: \[ (2 (\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}))^x = 2^x \] This simplifies to: \[ 2^x \left( \cos\left(\frac{\pi}{3} x\right) + i \sin\left(\frac{\pi}{3} x\right) \right) = 2^x \] ### Step 3: Divide both sides by \( 2^x \) Assuming \( 2^x \neq 0 \), we can divide both sides by \( 2^x \): \[ \cos\left(\frac{\pi}{3} x\right) + i \sin\left(\frac{\pi}{3} x\right) = 1 \] ### Step 4: Set the real and imaginary parts For the equality to hold, the imaginary part must be zero, and the real part must equal one: 1. \( \cos\left(\frac{\pi}{3} x\right) = 1 \) 2. \( \sin\left(\frac{\pi}{3} x\right) = 0 \) ### Step 5: Solve for \( x \) From \( \cos\left(\frac{\pi}{3} x\right) = 1 \): \[ \frac{\pi}{3} x = 2k\pi \quad \text{for } k \in \mathbb{Z} \] This simplifies to: \[ x = 6k \] From \( \sin\left(\frac{\pi}{3} x\right) = 0 \): \[ \frac{\pi}{3} x = n\pi \quad \text{for } n \in \mathbb{Z} \] This simplifies to: \[ x = 3n \] ### Step 6: Combine results Since \( x = 6k \) and \( x = 3n \) must hold simultaneously, we can express \( n \) in terms of \( k \): \[ 3n = 6k \implies n = 2k \] Thus, the solutions can be expressed as: \[ x = 6k \quad \text{where } k \in \mathbb{Z} \] ### Conclusion The solutions of the equation \( (1 + i \sqrt{3})^x = 2^x \) are of the form \( x = 6k \), where \( k \) is any integer. ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=2^(3x) is

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The number of solutions of the equation (1)/(2) log_(sqrt(3)) ((x + 1)/(x + 5)) + log_(9) (x + 5)^(2) = 1 is

The number of solutions of the equation |2 sin x-sqrt(3)|^(2 cos^(2) x-3 cos x+1)=1 in [0, pi] is

The solution set of the equation x^((2)/(3))+x^((1)/(3))=2

The sum of solutions of the equation 2 sin^(-1) sqrt(x^(2)+x+1)+cos^(-1) sqrt(x^(2)+x)=(3pi)/(2) is :

The number of solutions of the equation sin((pi x)/(2sqrt(3)))=x^(2)-2sqrt(3)x+4

Find the general solution of each equation : (i) sqrt(3)cotx+1=0 (ii) "cosec "x+sqrt(2)=0

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If ( sqrt(3) + i) ^(100) = 2 ^(99) (a + i b) then b =

    Text Solution

    |

  2. If ( sqrt( 3) + i) ^(10) = a + ib then, a and b are respectively

    Text Solution

    |

  3. The solution of the equation (1 + i sqrt(3))^(x) = 2^(x) are in

    Text Solution

    |

  4. If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

    Text Solution

    |

  5. Sum of sixth power of the roots of the equation t^(2) - 2t + 4 = 0 i...

    Text Solution

    |

  6. (1 + i) ^(8) + (1 - i) ^(8) =

    Text Solution

    |

  7. If [ (sqrt(3) // 2 + (1 //2)i)/(sqrt(3) // 2 - (1//2)i)] ^(120) = a +...

    Text Solution

    |

  8. (-64)^(1//4) is equal to-

    Text Solution

    |

  9. The points representing 3 sqrt(sqrt""5 + isqrt""3) lie

    Text Solution

    |

  10. Given z is a complex number with modulus 1. Then the equation ((1 +...

    Text Solution

    |

  11. If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=...

    Text Solution

    |

  12. ((cos theta + i sin theta)^(4))/( (sin theta + i cos theta)^(5)) is eq...

    Text Solution

    |

  13. If a^(2)+b^(2)=1, prove that (1+b+ia)/(1+b-ia)=b+ia.

    Text Solution

    |

  14. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  15. The value of sum (k = 1)^(6) ( sin "" ( 2 pi k)/( 7) - i cos "" ( 2 p...

    Text Solution

    |

  16. The value of sum (k = 0) ^(10) ( sin "" ( 2 k pi)/(11) + i cos "" (2 ...

    Text Solution

    |

  17. [(1 + sin "" (pi)/( 8) + i cos "" (pi)/( 8))/( 1 + sin "" (pi)/( 8) - ...

    Text Solution

    |

  18. If [(1 + cos theta + i sin theta)/( sin theta + i (1 + cos theta))] ^...

    Text Solution

    |

  19. The value of 1 + sum (k = 0)^( 12) { cos "" (( 2 k + 1) pi)/( 13) + i...

    Text Solution

    |

  20. If z(r) = cos ( pi // 2^(r)) + i sin ( pi // 2 ^(r)) r = 1, 2, . . . ...

    Text Solution

    |