Home
Class 12
MATHS
If [ (sqrt(3) // 2 + (1 //2)i)/(sqrt(3)...

If ` [ (sqrt(3) // 2 + (1 //2)i)/(sqrt(3) // 2 - (1//2)i)] ^(120) = a + ib ` then

A

` a = cos 20^(@) , b = sin 20^(@)`

B

` a = - cos 20^(@), b = - sin 20^(@)`

C

` a = cos 20^(@), b = - sin 20^(@)`

D

` a = 1, b = 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression \( \left( \frac{\sqrt{3}/2 + (1/2)i}{\sqrt{3}/2 - (1/2)i} \right)^{120} \) and express it in the form \( a + ib \). ### Step-by-Step Solution: 1. **Identify the components of the complex number**: We have: \[ z = \frac{\sqrt{3}/2 + (1/2)i}{\sqrt{3}/2 - (1/2)i} \] 2. **Convert to polar form**: To convert the complex number to polar form, we can express it in terms of its modulus and argument. We can rewrite the numerator and denominator: - Numerator: \( \sqrt{3}/2 + (1/2)i \) - Denominator: \( \sqrt{3}/2 - (1/2)i \) The modulus of both the numerator and denominator is: \[ r = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = \sqrt{1} = 1 \] 3. **Calculate the argument**: - For the numerator: \[ \theta_1 = \tan^{-1}\left(\frac{1/2}{\sqrt{3}/2}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] - For the denominator: \[ \theta_2 = \tan^{-1}\left(\frac{-1/2}{\sqrt{3}/2}\right) = \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6} \] 4. **Find the argument of the quotient**: The argument of \( z \) is: \[ \theta = \theta_1 - \theta_2 = \frac{\pi}{6} - \left(-\frac{\pi}{6}\right) = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3} \] 5. **Express \( z \) in polar form**: Since the modulus is 1, we can express \( z \) as: \[ z = e^{i \frac{\pi}{3}} \] 6. **Raise to the power of 120**: Now we raise \( z \) to the power of 120: \[ z^{120} = \left(e^{i \frac{\pi}{3}}\right)^{120} = e^{i \frac{120\pi}{3}} = e^{i 40\pi} \] 7. **Simplify \( e^{i 40\pi} \)**: Since \( e^{i 40\pi} \) corresponds to a full rotation (as \( e^{i 2\pi} = 1 \)), we have: \[ e^{i 40\pi} = \cos(40\pi) + i \sin(40\pi) = 1 + 0i \] 8. **Identify \( a \) and \( b \)**: Comparing with \( a + ib \), we find: \[ a = 1, \quad b = 0 \] ### Final Answer: Thus, the values of \( a \) and \( b \) are: \[ a = 1, \quad b = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

(sqrt(3)-i sqrt(2))/(2sqrt(3)-i sqrt(2))

If z = ((1)/(sqrt(3)) + (1)/(2)i)^(7) + ((1)/(sqrt(3))-(1)/(2)i)^(7) , then

(1-sqrt(3))/(2+2i)

If (1+ i sqrt(3))^(1999)=a+ib , then

sqrt(3)+(sqrt(3)-i2)-(3-i2)

Express (-3 sqrt(3) + sqrt(-2))(2 sqrt(3) - i) in the form (a + ib).

the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

If i = sqrt(-1) , then 4 + 3 (-(1)/(2) + i(sqrt(3))/(2))^(127)+5(-(1)/(2)+i(sqrt(3))/(2))^(124) is equal to

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. Sum of sixth power of the roots of the equation t^(2) - 2t + 4 = 0 i...

    Text Solution

    |

  2. (1 + i) ^(8) + (1 - i) ^(8) =

    Text Solution

    |

  3. If [ (sqrt(3) // 2 + (1 //2)i)/(sqrt(3) // 2 - (1//2)i)] ^(120) = a +...

    Text Solution

    |

  4. (-64)^(1//4) is equal to-

    Text Solution

    |

  5. The points representing 3 sqrt(sqrt""5 + isqrt""3) lie

    Text Solution

    |

  6. Given z is a complex number with modulus 1. Then the equation ((1 +...

    Text Solution

    |

  7. If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=...

    Text Solution

    |

  8. ((cos theta + i sin theta)^(4))/( (sin theta + i cos theta)^(5)) is eq...

    Text Solution

    |

  9. If a^(2)+b^(2)=1, prove that (1+b+ia)/(1+b-ia)=b+ia.

    Text Solution

    |

  10. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  11. The value of sum (k = 1)^(6) ( sin "" ( 2 pi k)/( 7) - i cos "" ( 2 p...

    Text Solution

    |

  12. The value of sum (k = 0) ^(10) ( sin "" ( 2 k pi)/(11) + i cos "" (2 ...

    Text Solution

    |

  13. [(1 + sin "" (pi)/( 8) + i cos "" (pi)/( 8))/( 1 + sin "" (pi)/( 8) - ...

    Text Solution

    |

  14. If [(1 + cos theta + i sin theta)/( sin theta + i (1 + cos theta))] ^...

    Text Solution

    |

  15. The value of 1 + sum (k = 0)^( 12) { cos "" (( 2 k + 1) pi)/( 13) + i...

    Text Solution

    |

  16. If z(r) = cos ( pi // 2^(r)) + i sin ( pi // 2 ^(r)) r = 1, 2, . . . ...

    Text Solution

    |

  17. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  18. If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

    Text Solution

    |

  19. The value of (tan(i*log((a-ib)/(a+ib)))) is

    Text Solution

    |

  20. If x satisfies the equation x^(2) - 2 x cos theta + 1 = 0 then the ...

    Text Solution

    |