Home
Class 12
MATHS
The points representing 3 sqrt(sqrt""5...

The points representing ` 3 sqrt(sqrt""5 + isqrt""3)` lie

A

on a circle centre (0,0) and radius `2 sqrt""2`

B

on a straight line

C

on a circle centre (0,0) and radius `sqrt""2 `

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the points representing \( 3 \sqrt{\sqrt{5} + i\sqrt{3}} \), we will follow these steps: ### Step 1: Simplify the expression inside the square root We start with the expression \( \sqrt{5} + i\sqrt{3} \). ### Step 2: Find the magnitude of the complex number The magnitude \( |z| \) of a complex number \( z = a + bi \) is given by: \[ |z| = \sqrt{a^2 + b^2} \] For our complex number \( \sqrt{5} + i\sqrt{3} \): - \( a = \sqrt{5} \) - \( b = \sqrt{3} \) Calculating the magnitude: \[ |z| = \sqrt{(\sqrt{5})^2 + (\sqrt{3})^2} = \sqrt{5 + 3} = \sqrt{8} = 2\sqrt{2} \] ### Step 3: Find the argument of the complex number The argument \( \theta \) of a complex number \( z = a + bi \) is given by: \[ \theta = \tan^{-1}\left(\frac{b}{a}\right) \] For our complex number: \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{\sqrt{5}}\right) \] ### Step 4: Write the complex number in polar form The polar form of a complex number is given by: \[ z = r(\cos \theta + i \sin \theta) \] Where \( r \) is the magnitude and \( \theta \) is the argument. Thus, we can express \( \sqrt{5} + i\sqrt{3} \) as: \[ \sqrt{5} + i\sqrt{3} = 2\sqrt{2} \left( \cos\left(\tan^{-1}\left(\frac{\sqrt{3}}{\sqrt{5}}\right)\right) + i \sin\left(\tan^{-1}\left(\frac{\sqrt{3}}{\sqrt{5}}\right)\right) \right) \] ### Step 5: Take the square root of the complex number To find \( \sqrt{\sqrt{5} + i\sqrt{3}} \), we take the square root in polar form: \[ \sqrt{z} = \sqrt{r} \left( \cos\left(\frac{\theta}{2}\right) + i \sin\left(\frac{\theta}{2}\right) \right) \] Calculating \( \sqrt{r} \): \[ \sqrt{r} = \sqrt{2\sqrt{2}} = 2^{3/4} = 2^{0.75} \] Calculating \( \frac{\theta}{2} \): \[ \frac{\theta}{2} = \frac{1}{2} \tan^{-1}\left(\frac{\sqrt{3}}{\sqrt{5}}\right) \] ### Step 6: Multiply by 3 Now we multiply the result by 3: \[ 3 \sqrt{\sqrt{5} + i\sqrt{3}} = 3 \cdot 2^{0.75} \left( \cos\left(\frac{1}{2} \tan^{-1}\left(\frac{\sqrt{3}}{\sqrt{5}}\right)\right) + i \sin\left(\frac{1}{2} \tan^{-1}\left(\frac{\sqrt{3}}{\sqrt{5}}\right)\right) \right) \] ### Final Result The points representing \( 3 \sqrt{\sqrt{5} + i\sqrt{3}} \) can be expressed in polar form as above.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

(sqrt5 + isqrt3)(-2 + i)

(sqrt3-sqrt5)(sqrt5+sqrt3)

Simplify (sqrt5 - sqrt3)(sqrt5 + sqrt 3)

(sqrt5+sqrt3)/(sqrt5-sqrt3)=

Represent sqrt3 and sqrt5 on the number line.

(2sqrt3 + sqrt5)(2sqrt3 - sqrt5)

Represent sqrt(2),sqrt(3) and sqrt(5) on the real line

(2sqrt3+sqrt5)(2sqrt3+sqrt5)

Simplify (sqrt3-sqrt5)(sqrt5+sqrt3)

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If [ (sqrt(3) // 2 + (1 //2)i)/(sqrt(3) // 2 - (1//2)i)] ^(120) = a +...

    Text Solution

    |

  2. (-64)^(1//4) is equal to-

    Text Solution

    |

  3. The points representing 3 sqrt(sqrt""5 + isqrt""3) lie

    Text Solution

    |

  4. Given z is a complex number with modulus 1. Then the equation ((1 +...

    Text Solution

    |

  5. If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=...

    Text Solution

    |

  6. ((cos theta + i sin theta)^(4))/( (sin theta + i cos theta)^(5)) is eq...

    Text Solution

    |

  7. If a^(2)+b^(2)=1, prove that (1+b+ia)/(1+b-ia)=b+ia.

    Text Solution

    |

  8. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  9. The value of sum (k = 1)^(6) ( sin "" ( 2 pi k)/( 7) - i cos "" ( 2 p...

    Text Solution

    |

  10. The value of sum (k = 0) ^(10) ( sin "" ( 2 k pi)/(11) + i cos "" (2 ...

    Text Solution

    |

  11. [(1 + sin "" (pi)/( 8) + i cos "" (pi)/( 8))/( 1 + sin "" (pi)/( 8) - ...

    Text Solution

    |

  12. If [(1 + cos theta + i sin theta)/( sin theta + i (1 + cos theta))] ^...

    Text Solution

    |

  13. The value of 1 + sum (k = 0)^( 12) { cos "" (( 2 k + 1) pi)/( 13) + i...

    Text Solution

    |

  14. If z(r) = cos ( pi // 2^(r)) + i sin ( pi // 2 ^(r)) r = 1, 2, . . . ...

    Text Solution

    |

  15. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  16. If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

    Text Solution

    |

  17. The value of (tan(i*log((a-ib)/(a+ib)))) is

    Text Solution

    |

  18. If x satisfies the equation x^(2) - 2 x cos theta + 1 = 0 then the ...

    Text Solution

    |

  19. If 2 cos theta = x + (1)/( x) , 2 cos phi = y + (1)/( y) then

    Text Solution

    |

  20. The equation whose roots are nth power of the roots of the equations...

    Text Solution

    |