Home
Class 12
MATHS
Given z is a complex number with modul...

Given z is a complex number with modulus 1. Then the equation `((1 + i a)/(1 - i a))^(4) = z ` has

A

all roots real and distinct

B

two roots real and two imaginary

C

three roots real and one imaginary

D

one root real and three imaginary

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left(\frac{1 + ia}{1 - ia}\right)^{4} = z\) given that \(z\) is a complex number with modulus 1, we will follow these steps: ### Step 1: Analyze the given equation We start with the equation: \[ \left(\frac{1 + ia}{1 - ia}\right)^{4} = z \] Since \(z\) has a modulus of 1, we can deduce that the modulus of the left-hand side must also be 1. ### Step 2: Calculate the modulus of the left-hand side We need to find the modulus of \(\frac{1 + ia}{1 - ia}\): \[ \text{Modulus} = \frac{|1 + ia|}{|1 - ia|} \] Calculating the modulus of the numerator and denominator: - For \(1 + ia\): \[ |1 + ia| = \sqrt{1^2 + a^2} = \sqrt{1 + a^2} \] - For \(1 - ia\): \[ |1 - ia| = \sqrt{1^2 + a^2} = \sqrt{1 + a^2} \] Thus, we have: \[ \frac{|1 + ia|}{|1 - ia|} = \frac{\sqrt{1 + a^2}}{\sqrt{1 + a^2}} = 1 \] ### Step 3: Raise the modulus to the power of 4 Now, raising the modulus to the power of 4: \[ \left(\frac{|1 + ia|}{|1 - ia|}\right)^{4} = 1^{4} = 1 \] This confirms that the left-hand side has a modulus of 1. ### Step 4: Set the modulus equal to the modulus of \(z\) Since we know that the modulus of \(z\) is also 1, we have: \[ 1 = |z| = 1 \] This condition is satisfied. ### Step 5: Analyze the argument of the complex number Next, we need to consider the argument of the complex number: \[ \frac{1 + ia}{1 - ia} \] Using the property of arguments: \[ \arg\left(\frac{1 + ia}{1 - ia}\right) = \arg(1 + ia) - \arg(1 - ia) \] Calculating the arguments: - For \(1 + ia\): \[ \arg(1 + ia) = \tan^{-1}\left(\frac{a}{1}\right) = \tan^{-1}(a) \] - For \(1 - ia\): \[ \arg(1 - ia) = \tan^{-1}\left(\frac{-a}{1}\right) = -\tan^{-1}(a) \] Thus: \[ \arg\left(\frac{1 + ia}{1 - ia}\right) = \tan^{-1}(a) - (-\tan^{-1}(a)) = 2\tan^{-1}(a) \] ### Step 6: Set the argument equal to \(z\) Now, we have: \[ \arg\left(\left(\frac{1 + ia}{1 - ia}\right)^{4}\right) = 4 \cdot \arg\left(\frac{1 + ia}{1 - ia}\right) = 8\tan^{-1}(a) \] This means: \[ 8\tan^{-1}(a) = \arg(z) \] Since \(z\) has modulus 1, its argument can take any value. ### Conclusion The equation \(\left(\frac{1 + ia}{1 - ia}\right)^{4} = z\) has solutions for all real values of \(a\). Therefore, the solutions are real and distinct.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If z is a complex number of unit modulus and argument theta , then arg((1+z)/(1+bar(z))) equals to

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0

If z is a complex number satisfying the relation |z+1|=z+2(1+i), then z is

The complex number z satisfying the equation |z-i|=|z+1|=1

Ifa complex number z has modulus 1 and argument (pi)/(3), then z^(2)+z

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. (-64)^(1//4) is equal to-

    Text Solution

    |

  2. The points representing 3 sqrt(sqrt""5 + isqrt""3) lie

    Text Solution

    |

  3. Given z is a complex number with modulus 1. Then the equation ((1 +...

    Text Solution

    |

  4. If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=...

    Text Solution

    |

  5. ((cos theta + i sin theta)^(4))/( (sin theta + i cos theta)^(5)) is eq...

    Text Solution

    |

  6. If a^(2)+b^(2)=1, prove that (1+b+ia)/(1+b-ia)=b+ia.

    Text Solution

    |

  7. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  8. The value of sum (k = 1)^(6) ( sin "" ( 2 pi k)/( 7) - i cos "" ( 2 p...

    Text Solution

    |

  9. The value of sum (k = 0) ^(10) ( sin "" ( 2 k pi)/(11) + i cos "" (2 ...

    Text Solution

    |

  10. [(1 + sin "" (pi)/( 8) + i cos "" (pi)/( 8))/( 1 + sin "" (pi)/( 8) - ...

    Text Solution

    |

  11. If [(1 + cos theta + i sin theta)/( sin theta + i (1 + cos theta))] ^...

    Text Solution

    |

  12. The value of 1 + sum (k = 0)^( 12) { cos "" (( 2 k + 1) pi)/( 13) + i...

    Text Solution

    |

  13. If z(r) = cos ( pi // 2^(r)) + i sin ( pi // 2 ^(r)) r = 1, 2, . . . ...

    Text Solution

    |

  14. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  15. If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

    Text Solution

    |

  16. The value of (tan(i*log((a-ib)/(a+ib)))) is

    Text Solution

    |

  17. If x satisfies the equation x^(2) - 2 x cos theta + 1 = 0 then the ...

    Text Solution

    |

  18. If 2 cos theta = x + (1)/( x) , 2 cos phi = y + (1)/( y) then

    Text Solution

    |

  19. The equation whose roots are nth power of the roots of the equations...

    Text Solution

    |

  20. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |