Home
Class 12
MATHS
The value of sum (k = 1)^(6) ( sin "" (...

The value of ` sum _(k = 1)^(6) ( sin "" ( 2 pi k)/( 7) - i cos "" ( 2 pi k)/( 7))` is

A

`-1`

B

0

C

`-i`

D

i

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the sum: \[ S = \sum_{k=1}^{6} \left( \sin\left(\frac{2\pi k}{7}\right) - i \cos\left(\frac{2\pi k}{7}\right) \right) \] ### Step 1: Rewrite the expression We can rewrite the expression inside the summation using Euler's formula, where \( e^{ix} = \cos(x) + i\sin(x) \). Thus, we can express \( \sin \) and \( \cos \) in terms of \( e^{ix} \): \[ \sin\left(\frac{2\pi k}{7}\right) = \frac{e^{i\frac{2\pi k}{7}} - e^{-i\frac{2\pi k}{7}}}{2i} \] \[ \cos\left(\frac{2\pi k}{7}\right) = \frac{e^{i\frac{2\pi k}{7}} + e^{-i\frac{2\pi k}{7}}}{2} \] Substituting these into the sum gives: \[ S = \sum_{k=1}^{6} \left( \frac{e^{i\frac{2\pi k}{7}} - e^{-i\frac{2\pi k}{7}}}{2i} - i \cdot \frac{e^{i\frac{2\pi k}{7}} + e^{-i\frac{2\pi k}{7}}}{2} \right) \] ### Step 2: Simplify the expression Now, we can combine the terms inside the summation: \[ S = \sum_{k=1}^{6} \left( \frac{1}{2i}(e^{i\frac{2\pi k}{7}} - e^{-i\frac{2\pi k}{7}}) - \frac{i}{2}(e^{i\frac{2\pi k}{7}} + e^{-i\frac{2\pi k}{7}}) \right) \] This simplifies to: \[ S = \sum_{k=1}^{6} \left( \frac{1}{2i} e^{i\frac{2\pi k}{7}} - \frac{i}{2} e^{i\frac{2\pi k}{7}} - \frac{1}{2i} e^{-i\frac{2\pi k}{7}} - \frac{i}{2} e^{-i\frac{2\pi k}{7}} \right) \] ### Step 3: Combine like terms Combining the terms gives: \[ S = \sum_{k=1}^{6} \left( \left(\frac{1}{2i} - \frac{i}{2}\right)e^{i\frac{2\pi k}{7}} - \left(\frac{1}{2i} + \frac{i}{2}\right)e^{-i\frac{2\pi k}{7}} \right) \] ### Step 4: Recognize the geometric series The terms \( e^{i\frac{2\pi k}{7}} \) for \( k = 1, 2, \ldots, 6 \) represent the 7th roots of unity (excluding \( k=0 \)). The sum of all 7th roots of unity is zero: \[ 1 + e^{i\frac{2\pi}{7}} + e^{i\frac{4\pi}{7}} + e^{i\frac{6\pi}{7}} + e^{i\frac{8\pi}{7}} + e^{i\frac{10\pi}{7}} + e^{i\frac{12\pi}{7}} = 0 \] Thus, we have: \[ e^{i\frac{2\pi}{7}} + e^{i\frac{4\pi}{7}} + e^{i\frac{6\pi}{7}} + e^{i\frac{8\pi}{7}} + e^{i\frac{10\pi}{7}} + e^{i\frac{12\pi}{7}} = -1 \] ### Step 5: Calculate the final sum Substituting back into our expression for \( S \): \[ S = -i \cdot (-1) = i \] ### Conclusion Thus, the final value of the sum is: \[ \boxed{i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

prod_ (k = 1) ^ (6) (sin ((2k pi) / (7)) - i cos ((2k pi) / (7))) =

The value of sum_(k=1)^(10)((sin(2 pi k))/(11)-i(cos(2 pi k))/(11)) is

sum_ (k = 1) ^ (10) ((sin (2k pi)) / (11) + i (cos (2k pi)) / (11))

The value of sum_(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

The value of sum_(k=0)^(oo)(cos(k pi)6^(k))/(k!) is

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If a^(2)+b^(2)=1, prove that (1+b+ia)/(1+b-ia)=b+ia.

    Text Solution

    |

  2. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  3. The value of sum (k = 1)^(6) ( sin "" ( 2 pi k)/( 7) - i cos "" ( 2 p...

    Text Solution

    |

  4. The value of sum (k = 0) ^(10) ( sin "" ( 2 k pi)/(11) + i cos "" (2 ...

    Text Solution

    |

  5. [(1 + sin "" (pi)/( 8) + i cos "" (pi)/( 8))/( 1 + sin "" (pi)/( 8) - ...

    Text Solution

    |

  6. If [(1 + cos theta + i sin theta)/( sin theta + i (1 + cos theta))] ^...

    Text Solution

    |

  7. The value of 1 + sum (k = 0)^( 12) { cos "" (( 2 k + 1) pi)/( 13) + i...

    Text Solution

    |

  8. If z(r) = cos ( pi // 2^(r)) + i sin ( pi // 2 ^(r)) r = 1, 2, . . . ...

    Text Solution

    |

  9. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  10. If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

    Text Solution

    |

  11. The value of (tan(i*log((a-ib)/(a+ib)))) is

    Text Solution

    |

  12. If x satisfies the equation x^(2) - 2 x cos theta + 1 = 0 then the ...

    Text Solution

    |

  13. If 2 cos theta = x + (1)/( x) , 2 cos phi = y + (1)/( y) then

    Text Solution

    |

  14. The equation whose roots are nth power of the roots of the equations...

    Text Solution

    |

  15. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |

  16. The following in the form A + i B ( cos 2 theta + i sin 2 theta )^(-...

    Text Solution

    |

  17. If x = cos theta + i sin theta , y = cos phi + i sin phi z = cos Ps...

    Text Solution

    |

  18. If a = cos alpha + i sin alpha , b = cos beta + i sin beta , " then ...

    Text Solution

    |

  19. If cos A + cos B + cos C = 0, sin A + sin B + sin C = 0 and A + B +...

    Text Solution

    |

  20. If cos A + cos B + cos C = 0 = sin A + sin B + sin C , then

    Text Solution

    |