Home
Class 12
MATHS
The value of sum (k = 0) ^(10) ( sin ""...

The value of ` sum _(k = 0) ^(10) ( sin "" ( 2 k pi)/(11) + i cos "" (2 k pi)/( 11))` is

A

1

B

`-1`

C

0

D

i

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \sum_{k=0}^{10} \left( \sin\left(\frac{2k\pi}{11}\right) + i \cos\left(\frac{2k\pi}{11}\right) \right) \] ### Step 1: Rewrite the terms using Euler's formula Using Euler's formula, we can express the sine and cosine functions in terms of the exponential function: \[ \sin\left(\frac{2k\pi}{11}\right) = \frac{e^{i\frac{2k\pi}{11}} - e^{-i\frac{2k\pi}{11}}}{2i} \] \[ \cos\left(\frac{2k\pi}{11}\right) = \frac{e^{i\frac{2k\pi}{11}} + e^{-i\frac{2k\pi}{11}}}{2} \] Thus, we can rewrite the sum \( S \): \[ S = \sum_{k=0}^{10} \left( \frac{e^{i\frac{2k\pi}{11}} - e^{-i\frac{2k\pi}{11}}}{2i} + i \cdot \frac{e^{i\frac{2k\pi}{11}} + e^{-i\frac{2k\pi}{11}}}{2} \right) \] ### Step 2: Combine the terms Combining the terms inside the sum gives us: \[ S = \sum_{k=0}^{10} \left( \frac{e^{i\frac{2k\pi}{11}} - e^{-i\frac{2k\pi}{11}} + 2i^2 e^{i\frac{2k\pi}{11}} + 2i^2 e^{-i\frac{2k\pi}{11}}}{2i} \right) \] Since \( i^2 = -1 \), we have: \[ S = \sum_{k=0}^{10} \left( \frac{(1 - 2)e^{i\frac{2k\pi}{11}} + (1 + 2)e^{-i\frac{2k\pi}{11}}}{2i} \right) \] This simplifies to: \[ S = \sum_{k=0}^{10} \left( \frac{-e^{i\frac{2k\pi}{11}} + 3e^{-i\frac{2k\pi}{11}}}{2i} \right) \] ### Step 3: Factor out the common terms We can factor out the common terms from the sum: \[ S = \frac{1}{2i} \left( -\sum_{k=0}^{10} e^{i\frac{2k\pi}{11}} + 3\sum_{k=0}^{10} e^{-i\frac{2k\pi}{11}} \right) \] ### Step 4: Evaluate the sums The sums \( \sum_{k=0}^{10} e^{i\frac{2k\pi}{11}} \) and \( \sum_{k=0}^{10} e^{-i\frac{2k\pi}{11}} \) are geometric series. The sum of a geometric series can be calculated using the formula: \[ \text{Sum} = a \frac{1 - r^n}{1 - r} \] where \( a \) is the first term, \( r \) is the common ratio, and \( n \) is the number of terms. For \( \sum_{k=0}^{10} e^{i\frac{2k\pi}{11}} \): - First term \( a = 1 \) - Common ratio \( r = e^{i\frac{2\pi}{11}} \) - Number of terms \( n = 11 \) Thus: \[ \sum_{k=0}^{10} e^{i\frac{2k\pi}{11}} = \frac{1 - (e^{i\frac{2\pi}{11}})^{11}}{1 - e^{i\frac{2\pi}{11}}} = \frac{1 - e^{2\pi i}}{1 - e^{i\frac{2\pi}{11}}} = \frac{0}{1 - e^{i\frac{2\pi}{11}}} = 0 \] Similarly, for \( \sum_{k=0}^{10} e^{-i\frac{2k\pi}{11}} \): \[ \sum_{k=0}^{10} e^{-i\frac{2k\pi}{11}} = 0 \] ### Step 5: Conclude the sum Substituting these results back into our expression for \( S \): \[ S = \frac{1}{2i} \left( -0 + 3 \cdot 0 \right) = 0 \] Thus, the value of the sum is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

sum_ (k = 1) ^ (10) ((sin (2k pi)) / (11) + i (cos (2k pi)) / (11))

prod_ (k = 1) ^ (6) (sin ((2k pi) / (7)) - i cos ((2k pi) / (7))) =

The value of sum_(k=1)^(10)((sin(2 pi k))/(11)-i(cos(2 pi k))/(11)) is

sum_ (k = 1) ^ (6) (sin, (2 pi k) / (7) -i cos, (2 pi k) / (7)) =?

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  2. The value of sum (k = 1)^(6) ( sin "" ( 2 pi k)/( 7) - i cos "" ( 2 p...

    Text Solution

    |

  3. The value of sum (k = 0) ^(10) ( sin "" ( 2 k pi)/(11) + i cos "" (2 ...

    Text Solution

    |

  4. [(1 + sin "" (pi)/( 8) + i cos "" (pi)/( 8))/( 1 + sin "" (pi)/( 8) - ...

    Text Solution

    |

  5. If [(1 + cos theta + i sin theta)/( sin theta + i (1 + cos theta))] ^...

    Text Solution

    |

  6. The value of 1 + sum (k = 0)^( 12) { cos "" (( 2 k + 1) pi)/( 13) + i...

    Text Solution

    |

  7. If z(r) = cos ( pi // 2^(r)) + i sin ( pi // 2 ^(r)) r = 1, 2, . . . ...

    Text Solution

    |

  8. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  9. If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

    Text Solution

    |

  10. The value of (tan(i*log((a-ib)/(a+ib)))) is

    Text Solution

    |

  11. If x satisfies the equation x^(2) - 2 x cos theta + 1 = 0 then the ...

    Text Solution

    |

  12. If 2 cos theta = x + (1)/( x) , 2 cos phi = y + (1)/( y) then

    Text Solution

    |

  13. The equation whose roots are nth power of the roots of the equations...

    Text Solution

    |

  14. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |

  15. The following in the form A + i B ( cos 2 theta + i sin 2 theta )^(-...

    Text Solution

    |

  16. If x = cos theta + i sin theta , y = cos phi + i sin phi z = cos Ps...

    Text Solution

    |

  17. If a = cos alpha + i sin alpha , b = cos beta + i sin beta , " then ...

    Text Solution

    |

  18. If cos A + cos B + cos C = 0, sin A + sin B + sin C = 0 and A + B +...

    Text Solution

    |

  19. If cos A + cos B + cos C = 0 = sin A + sin B + sin C , then

    Text Solution

    |

  20. The general value of x which satisfies the equation ( cos x + i sin ...

    Text Solution

    |