Home
Class 12
MATHS
[(1 + sin "" (pi)/( 8) + i cos "" (pi)/(...

`[(1 + sin "" (pi)/( 8) + i cos "" (pi)/( 8))/( 1 + sin "" (pi)/( 8) - i cos "" (pi)/( 8))]^(8) = `

A

`-1`

B

`1`

C

`i`

D

`-i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \left[\frac{1 + \sin\left(\frac{\pi}{8}\right) + i \cos\left(\frac{\pi}{8}\right)}{1 + \sin\left(\frac{\pi}{8}\right) - i \cos\left(\frac{\pi}{8}\right)}\right]^{8}, \] we will follow these steps: ### Step 1: Simplify the Expression We start with the expression inside the brackets: \[ \frac{1 + \sin\left(\frac{\pi}{8}\right) + i \cos\left(\frac{\pi}{8}\right)}{1 + \sin\left(\frac{\pi}{8}\right) - i \cos\left(\frac{\pi}{8}\right)}. \] Let \( a = 1 + \sin\left(\frac{\pi}{8}\right) \) and \( b = \cos\left(\frac{\pi}{8}\right) \). Thus, we can rewrite the expression as: \[ \frac{a + ib}{a - ib}. \] ### Step 2: Multiply by the Conjugate To simplify, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(a + ib)(a + ib)}{(a - ib)(a + ib)} = \frac{(a + ib)^2}{a^2 + b^2}. \] ### Step 3: Calculate the Denominator The denominator simplifies to: \[ a^2 + b^2 = \left(1 + \sin\left(\frac{\pi}{8}\right)\right)^2 + \cos^2\left(\frac{\pi}{8}\right). \] Expanding \( a^2 \): \[ = 1 + 2\sin\left(\frac{\pi}{8}\right) + \sin^2\left(\frac{\pi}{8}\right) + \cos^2\left(\frac{\pi}{8}\right). \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ = 1 + 2\sin\left(\frac{\pi}{8}\right) + 1 = 2 + 2\sin\left(\frac{\pi}{8}\right). \] ### Step 4: Calculate the Numerator Now for the numerator: \[ (a + ib)^2 = (1 + \sin\left(\frac{\pi}{8}\right) + i \cos\left(\frac{\pi}{8}\right))^2. \] Expanding this gives: \[ = (1 + \sin\left(\frac{\pi}{8}\right))^2 + 2i(1 + \sin\left(\frac{\pi}{8}\right))\cos\left(\frac{\pi}{8}\right) - \cos^2\left(\frac{\pi}{8}\right). \] ### Step 5: Combine and Simplify Now we have: \[ \frac{(1 + \sin\left(\frac{\pi}{8}\right))^2 - \cos^2\left(\frac{\pi}{8}\right) + 2i(1 + \sin\left(\frac{\pi}{8}\right))\cos\left(\frac{\pi}{8}\right)}{2 + 2\sin\left(\frac{\pi}{8}\right)}. \] ### Step 6: Convert to Exponential Form Using Euler's formula, we can express this in the form \( e^{i\theta} \). The angle \( \theta \) can be determined from the argument of the complex number. ### Step 7: Raise to the Power of 8 After simplifying to the form \( e^{i\theta} \), we raise it to the power of 8: \[ \left(e^{i\theta}\right)^{8} = e^{8i\theta}. \] ### Step 8: Find the Final Value The final value will be \( e^{8i\theta} \), which corresponds to \( \cos(8\theta) + i\sin(8\theta) \). ### Step 9: Evaluate \( \cos(3\pi) \) and \( \sin(3\pi) \) From the calculations, we find that \( 8\theta = 3\pi \): - \( \cos(3\pi) = -1 \) - \( \sin(3\pi) = 0 \) Thus, the final answer is: \[ \boxed{-1}. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

Simplify: [(1+ (sin pi) / (8) + i (cos pi) / (8)) / (1+ (sin pi) / (8) -i (cos pi) / (8))] ^ ((1) / (2))

[(1 + cos ((pi) / (8)) + i sin ((pi) / (8))) / (1 + cos ((pi) / (8)) - sin ((pi) / (8 )))] ^ (8) =?

The value of (sin frac(pi)(8) + i cos frac(pi)(8))^(8)/((sin frac(pi)(8) - i cos frac(pi)(8))^(8)) is :

(1 + cos ((pi) / (8))) (1 + cos (3 (pi) / (8))) (1 + cos (5 (pi) / (8))) (1 + cos (7 (pi) / (8))) =

((sin((pi)/(8))+i cos((pi)/(8)))^(8))/((sin((pi)/(8))-i cos((pi)/(8)))^(8)) =

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. The value of sum (k = 1)^(6) ( sin "" ( 2 pi k)/( 7) - i cos "" ( 2 p...

    Text Solution

    |

  2. The value of sum (k = 0) ^(10) ( sin "" ( 2 k pi)/(11) + i cos "" (2 ...

    Text Solution

    |

  3. [(1 + sin "" (pi)/( 8) + i cos "" (pi)/( 8))/( 1 + sin "" (pi)/( 8) - ...

    Text Solution

    |

  4. If [(1 + cos theta + i sin theta)/( sin theta + i (1 + cos theta))] ^...

    Text Solution

    |

  5. The value of 1 + sum (k = 0)^( 12) { cos "" (( 2 k + 1) pi)/( 13) + i...

    Text Solution

    |

  6. If z(r) = cos ( pi // 2^(r)) + i sin ( pi // 2 ^(r)) r = 1, 2, . . . ...

    Text Solution

    |

  7. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  8. If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

    Text Solution

    |

  9. The value of (tan(i*log((a-ib)/(a+ib)))) is

    Text Solution

    |

  10. If x satisfies the equation x^(2) - 2 x cos theta + 1 = 0 then the ...

    Text Solution

    |

  11. If 2 cos theta = x + (1)/( x) , 2 cos phi = y + (1)/( y) then

    Text Solution

    |

  12. The equation whose roots are nth power of the roots of the equations...

    Text Solution

    |

  13. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |

  14. The following in the form A + i B ( cos 2 theta + i sin 2 theta )^(-...

    Text Solution

    |

  15. If x = cos theta + i sin theta , y = cos phi + i sin phi z = cos Ps...

    Text Solution

    |

  16. If a = cos alpha + i sin alpha , b = cos beta + i sin beta , " then ...

    Text Solution

    |

  17. If cos A + cos B + cos C = 0, sin A + sin B + sin C = 0 and A + B +...

    Text Solution

    |

  18. If cos A + cos B + cos C = 0 = sin A + sin B + sin C , then

    Text Solution

    |

  19. The general value of x which satisfies the equation ( cos x + i sin ...

    Text Solution

    |

  20. Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) re...

    Text Solution

    |