Home
Class 12
MATHS
If 2 cos theta = x + (1)/( x) , 2 cos p...

If ` 2 cos theta = x + (1)/( x) , 2 cos phi = y + (1)/( y)` then

A

`(x)/(y)+ (y)/(x) = 2 cos (theta - phi)`

B

` xy + (1)/( xy) = 2 cos ( theta + phi)`

C

` x^(m) y^(n) + (1)/( x^(m) y^(n)) = 2 cos ( m theta + n phi)`

D

` (x^(m))/(y^(n)) + (y^(n))/(x^(m)) = 2 cos ( m theta - n phi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given the equations \( 2 \cos \theta = x + \frac{1}{x} \) and \( 2 \cos \phi = y + \frac{1}{y} \), we will derive the values of \( x \) and \( y \) in terms of complex exponentials and then analyze the relationships between them. ### Step 1: Rearranging the equations Starting with the first equation: \[ 2 \cos \theta = x + \frac{1}{x} \] We can multiply both sides by \( x \) to eliminate the fraction: \[ 2 \cos \theta \cdot x = x^2 + 1 \] Rearranging gives us a quadratic equation: \[ x^2 - 2 \cos \theta \cdot x + 1 = 0 \] ### Step 2: Solving the quadratic equation for \( x \) Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 1 \), \( b = -2 \cos \theta \), and \( c = 1 \). Substituting these values into the formula: \[ x = \frac{2 \cos \theta \pm \sqrt{(2 \cos \theta)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{2 \cos \theta \pm \sqrt{4 \cos^2 \theta - 4}}{2} \] \[ x = \cos \theta \pm \sqrt{\cos^2 \theta - 1} \] Since \( \sqrt{\cos^2 \theta - 1} = i \sin \theta \), we have: \[ x = \cos \theta \pm i \sin \theta \] Thus, we can express \( x \) as: \[ x = e^{i \theta} \quad \text{or} \quad x = e^{-i \theta} \] ### Step 3: Solving for \( y \) Similarly, for the second equation: \[ 2 \cos \phi = y + \frac{1}{y} \] Following the same steps, we multiply by \( y \): \[ 2 \cos \phi \cdot y = y^2 + 1 \] Rearranging gives: \[ y^2 - 2 \cos \phi \cdot y + 1 = 0 \] Using the quadratic formula again: \[ y = \frac{2 \cos \phi \pm \sqrt{(2 \cos \phi)^2 - 4}}{2} \] This simplifies to: \[ y = \cos \phi \pm i \sin \phi \] Thus, we can express \( y \) as: \[ y = e^{i \phi} \quad \text{or} \quad y = e^{-i \phi} \] ### Step 4: Finding \( \frac{x}{y} + \frac{y}{x} \) Now we calculate: \[ \frac{x}{y} + \frac{y}{x} \] Assuming \( x = e^{i \theta} \) and \( y = e^{i \phi} \): \[ \frac{x}{y} = \frac{e^{i \theta}}{e^{i \phi}} = e^{i(\theta - \phi)} \] And: \[ \frac{y}{x} = \frac{e^{i \phi}}{e^{i \theta}} = e^{i(\phi - \theta)} = e^{-i(\theta - \phi)} \] Thus: \[ \frac{x}{y} + \frac{y}{x} = e^{i(\theta - \phi)} + e^{-i(\theta - \phi)} = 2 \cos(\theta - \phi) \] ### Conclusion Therefore, we have shown that: \[ \frac{x}{y} + \frac{y}{x} = 2 \cos(\theta - \phi) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If 2cos theta=x+(1)/(x) and 2cos phi=y+(1)/(y) then

2cos theta=x+(1)/(x) and 2cos phi=y+(1)/(y) then (A)x^(n)+(1)/(x^(n))=2cos(n theta)n in Z(B)(x)/(y)+(y)/(x)=2cos(theta-phi)(C)xy+(1)/(Xy)=2cos(theta+phi)(D)x^(m)y^(n)+(1)/(x^(m)y^(n))=2(cos m theta+n phi),m,n in Z

If sin2 theta+sin2 phi=(1)/(2) and cos2 theta+cos2 phi=(3)/(2), then cos^(2)(theta-phi)=

If 2cos A=x+(1)/(x),2cos beta=y+(1)/(y) then show that 2cos(A-B)=(x)/(y)+(y)/(x)

(x) / (a) cos theta + (y) / (b) sin theta = 1, (x) / (a) sin theta- (y) / (b) cos theta = 1 then (x ^ (2)) / (a ^ (2)) + (y ^ (2)) / (b ^ (2)) =

If tan theta = (xsin phi)/(1-xcos phi) and tan phi = (y sin theta)/(1-y cos theta) show that x sin phi = y sin theta

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. The value of (tan(i*log((a-ib)/(a+ib)))) is

    Text Solution

    |

  2. If x satisfies the equation x^(2) - 2 x cos theta + 1 = 0 then the ...

    Text Solution

    |

  3. If 2 cos theta = x + (1)/( x) , 2 cos phi = y + (1)/( y) then

    Text Solution

    |

  4. The equation whose roots are nth power of the roots of the equations...

    Text Solution

    |

  5. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |

  6. The following in the form A + i B ( cos 2 theta + i sin 2 theta )^(-...

    Text Solution

    |

  7. If x = cos theta + i sin theta , y = cos phi + i sin phi z = cos Ps...

    Text Solution

    |

  8. If a = cos alpha + i sin alpha , b = cos beta + i sin beta , " then ...

    Text Solution

    |

  9. If cos A + cos B + cos C = 0, sin A + sin B + sin C = 0 and A + B +...

    Text Solution

    |

  10. If cos A + cos B + cos C = 0 = sin A + sin B + sin C , then

    Text Solution

    |

  11. The general value of x which satisfies the equation ( cos x + i sin ...

    Text Solution

    |

  12. Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) re...

    Text Solution

    |

  13. If ( tan theta - i [ sin ( theta // 2) + cos ( theta // 2) ])/( 1 + 2...

    Text Solution

    |

  14. Let f(p) ( beta) = ( cos "" (beta)/( p^(2)) + i sin "" (beta)/( p^(2)...

    Text Solution

    |

  15. The continued product of the four values of [ cos (pi/ 3) + i sin (...

    Text Solution

    |

  16. If a = cos alpha + i sin alpha, b = cos beta + i sin beta , " then " ...

    Text Solution

    |

  17. If alpha , beta be the roots of the the equation x^(2) - 2 x + 2 =...

    Text Solution

    |

  18. The complex number z has argZ = theta ,0 lt theta lt (pi)/(2) and sat...

    Text Solution

    |

  19. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  20. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |