Home
Class 12
MATHS
The equation whose roots are nth power ...

The equation whose roots are nth power of the roots of the equations is ` x^(2) - 2 x cos theta + 1 = 0` is given by

A

`( x + cos n theta)^(2) + sin^(2) n theta = 0 `

B

` ( x - cos n theta)^(2) + sin theta ^(2) n theta = 0 `

C

` x^(2) + 2 x cos n theta + 1 = 0 `

D

` x^(2) - 2 x cos n theta + 1 = 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the equation whose roots are the nth powers of the roots of the given equation \( x^2 - 2x \cos \theta + 1 = 0 \). ### Step-by-Step Solution: 1. **Identify the given quadratic equation**: The given equation is: \[ x^2 - 2x \cos \theta + 1 = 0 \] 2. **Find the roots of the quadratic equation**: We will use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -2 \cos \theta \), and \( c = 1 \). Plugging in the values: \[ x = \frac{2 \cos \theta \pm \sqrt{(-2 \cos \theta)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ = \frac{2 \cos \theta \pm \sqrt{4 \cos^2 \theta - 4}}{2} \] \[ = \frac{2 \cos \theta \pm 2 \sqrt{\cos^2 \theta - 1}}{2} \] \[ = \cos \theta \pm \sqrt{\cos^2 \theta - 1} \] Since \( \cos^2 \theta - 1 = -\sin^2 \theta \), we have: \[ = \cos \theta \pm i \sin \theta \] Thus, the roots are: \[ z_1 = \cos \theta + i \sin \theta \quad \text{and} \quad z_2 = \cos \theta - i \sin \theta \] 3. **Find the nth powers of the roots**: The nth powers of the roots are: \[ z_1^n = (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \] \[ z_2^n = (\cos \theta - i \sin \theta)^n = \cos(n\theta) - i \sin(n\theta) \] 4. **Form the new quadratic equation**: The new quadratic equation whose roots are \( z_1^n \) and \( z_2^n \) can be formed using the sum and product of the roots: - Sum of the roots: \[ z_1^n + z_2^n = (\cos(n\theta) + i \sin(n\theta)) + (\cos(n\theta) - i \sin(n\theta)) = 2 \cos(n\theta) \] - Product of the roots: \[ z_1^n \cdot z_2^n = (\cos(n\theta) + i \sin(n\theta))(\cos(n\theta) - i \sin(n\theta)) = \cos^2(n\theta) + \sin^2(n\theta) = 1 \] Therefore, the quadratic equation is: \[ x^2 - (z_1^n + z_2^n)x + z_1^n z_2^n = 0 \] Plugging in the values: \[ x^2 - 2 \cos(n\theta) x + 1 = 0 \] 5. **Final result**: The required equation is: \[ x^2 - 2 \cos(n\theta) x + 1 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

The equation whose roots are nth power of the roots of the equation,x^(2)-2x cos phi+1=0 is given by

Find the equation whose roots are the 7^(th) powers of the roots of the equation x^2-2xcostheta+1=0

The equation whose roots are reciprocals of the roots of the equation f(x)=0 is

The roots of the equation x^(2) -1=0 are

The equation whose roots are twice the roots of the equation x ^(2) - 2x + 4 = 0 is

The equation whose roots are reciprocals of the roots of the equation x^(3)-2x^(2)+6x+4=0

The equation whose roots are the squares of the roots of x^(3)+ax+b=0 is

Find the quadratic equation whose roots are reciprocals of the roots of the equation 7x^(2) - 2x +9 = 0 .

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If x satisfies the equation x^(2) - 2 x cos theta + 1 = 0 then the ...

    Text Solution

    |

  2. If 2 cos theta = x + (1)/( x) , 2 cos phi = y + (1)/( y) then

    Text Solution

    |

  3. The equation whose roots are nth power of the roots of the equations...

    Text Solution

    |

  4. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |

  5. The following in the form A + i B ( cos 2 theta + i sin 2 theta )^(-...

    Text Solution

    |

  6. If x = cos theta + i sin theta , y = cos phi + i sin phi z = cos Ps...

    Text Solution

    |

  7. If a = cos alpha + i sin alpha , b = cos beta + i sin beta , " then ...

    Text Solution

    |

  8. If cos A + cos B + cos C = 0, sin A + sin B + sin C = 0 and A + B +...

    Text Solution

    |

  9. If cos A + cos B + cos C = 0 = sin A + sin B + sin C , then

    Text Solution

    |

  10. The general value of x which satisfies the equation ( cos x + i sin ...

    Text Solution

    |

  11. Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) re...

    Text Solution

    |

  12. If ( tan theta - i [ sin ( theta // 2) + cos ( theta // 2) ])/( 1 + 2...

    Text Solution

    |

  13. Let f(p) ( beta) = ( cos "" (beta)/( p^(2)) + i sin "" (beta)/( p^(2)...

    Text Solution

    |

  14. The continued product of the four values of [ cos (pi/ 3) + i sin (...

    Text Solution

    |

  15. If a = cos alpha + i sin alpha, b = cos beta + i sin beta , " then " ...

    Text Solution

    |

  16. If alpha , beta be the roots of the the equation x^(2) - 2 x + 2 =...

    Text Solution

    |

  17. The complex number z has argZ = theta ,0 lt theta lt (pi)/(2) and sat...

    Text Solution

    |

  18. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  19. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  20. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |