Home
Class 12
MATHS
If x^(2) - 2 x cos theta + 1 = 0 " then...

If ` x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n theta ` is equal to

A

1

B

`-1`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - 2x \cos \theta + 1 = 0 \) and find \( x^{2n} - 2x^n \cos n\theta \), we can follow these steps: ### Step 1: Solve the Quadratic Equation The given quadratic equation is: \[ x^2 - 2x \cos \theta + 1 = 0 \] We can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -2 \cos \theta \), and \( c = 1 \). ### Step 2: Calculate the Discriminant First, we calculate the discriminant: \[ b^2 - 4ac = (-2 \cos \theta)^2 - 4 \cdot 1 \cdot 1 = 4 \cos^2 \theta - 4 = 4(\cos^2 \theta - 1) = 4(-\sin^2 \theta) = -4 \sin^2 \theta \] ### Step 3: Find the Roots Now substituting back into the quadratic formula: \[ x = \frac{2 \cos \theta \pm \sqrt{-4 \sin^2 \theta}}{2} \] This simplifies to: \[ x = \cos \theta \pm i \sin \theta \] Using Euler's formula, we can express the roots as: \[ x_1 = e^{i\theta}, \quad x_2 = e^{-i\theta} \] ### Step 4: Calculate \( x^n \) Now we need to find \( x^n \): \[ x_1^n = (e^{i\theta})^n = e^{in\theta} = \cos n\theta + i \sin n\theta \] \[ x_2^n = (e^{-i\theta})^n = e^{-in\theta} = \cos n\theta - i \sin n\theta \] ### Step 5: Calculate \( x^{2n} - 2x^n \cos n\theta \) Now, we can calculate: \[ x^{2n} = (x^n)^2 \] For both roots: \[ x_1^{2n} = (x_1^n)^2 = (\cos n\theta + i \sin n\theta)^2 = \cos^2 n\theta - \sin^2 n\theta + 2i \cos n\theta \sin n\theta \] \[ x_2^{2n} = (x_2^n)^2 = (\cos n\theta - i \sin n\theta)^2 = \cos^2 n\theta - \sin^2 n\theta - 2i \cos n\theta \sin n\theta \] ### Step 6: Combine the Results Now, we calculate: \[ x^{2n} - 2x^n \cos n\theta = (x_1^{2n} + x_2^{2n}) - 2(\cos n\theta)(x_1^n + x_2^n) \] Since \( x_1^n + x_2^n = 2\cos n\theta \): \[ x^{2n} - 2x^n \cos n\theta = 2(\cos^2 n\theta - \sin^2 n\theta) - 4\cos^2 n\theta = -2\cos^2 n\theta - 2\sin^2 n\theta \] Using the identity \( \cos^2 n\theta + \sin^2 n\theta = 1 \): \[ x^{2n} - 2x^n \cos n\theta = -2 \] ### Final Answer Thus, the expression \( x^{2n} - 2x^n \cos n\theta \) is equal to: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If x^(2)-2x cos theta+1=0, then the value of x^(2n)-2x^(n)cos n theta+1,n in N is equal to

If z + (1)/(z) = 2 cos theta, z in "C then z"^(2n) - 2z^(n) cos (n theta) is equal to

If x cos theta - sin theta =1 , then x^2 + (1 + x^2 ) sin theta equals

If cos theta + sec theta = 2 then cos^(n)theta+ sec^(n)theta is equal to ___

Find 1/x+x=2cos theta, then prove that x^(n)+1/x^(n)=2cos n theta

If theta =(pi)/(2 ^(n) +1), then cos theta cos 2 theta cos 2^(2) theta …cos 2 ^(n-1)theta is equal to

If cos^(-1)(x/m)+cos^(-1)(y/n)=theta , then x^2/m^2-(2xy)/(mn)costheta+y^2/n^2 is equal to

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If 2 cos theta = x + (1)/( x) , 2 cos phi = y + (1)/( y) then

    Text Solution

    |

  2. The equation whose roots are nth power of the roots of the equations...

    Text Solution

    |

  3. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |

  4. The following in the form A + i B ( cos 2 theta + i sin 2 theta )^(-...

    Text Solution

    |

  5. If x = cos theta + i sin theta , y = cos phi + i sin phi z = cos Ps...

    Text Solution

    |

  6. If a = cos alpha + i sin alpha , b = cos beta + i sin beta , " then ...

    Text Solution

    |

  7. If cos A + cos B + cos C = 0, sin A + sin B + sin C = 0 and A + B +...

    Text Solution

    |

  8. If cos A + cos B + cos C = 0 = sin A + sin B + sin C , then

    Text Solution

    |

  9. The general value of x which satisfies the equation ( cos x + i sin ...

    Text Solution

    |

  10. Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) re...

    Text Solution

    |

  11. If ( tan theta - i [ sin ( theta // 2) + cos ( theta // 2) ])/( 1 + 2...

    Text Solution

    |

  12. Let f(p) ( beta) = ( cos "" (beta)/( p^(2)) + i sin "" (beta)/( p^(2)...

    Text Solution

    |

  13. The continued product of the four values of [ cos (pi/ 3) + i sin (...

    Text Solution

    |

  14. If a = cos alpha + i sin alpha, b = cos beta + i sin beta , " then " ...

    Text Solution

    |

  15. If alpha , beta be the roots of the the equation x^(2) - 2 x + 2 =...

    Text Solution

    |

  16. The complex number z has argZ = theta ,0 lt theta lt (pi)/(2) and sat...

    Text Solution

    |

  17. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  18. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  19. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  20. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |