Home
Class 12
MATHS
If ( tan theta - i [ sin ( theta // 2) ...

If ` ( tan theta - i [ sin ( theta // 2) + cos ( theta // 2) ])/( 1 + 2 i sin ( theta // 2))` is purely imaginary then ` theta` is given by

A

`n pi + (pi)/( 4)`

B

` n pi - (pi)/( 4)`

C

` 2 n pi`

D

` 2 n pi + (pi)/( 4)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( \theta \) for which the expression \[ \frac{\tan \theta - i \left( \sin \frac{\theta}{2} + \cos \frac{\theta}{2} \right)}{1 + 2i \sin \frac{\theta}{2}} \] is purely imaginary, we need to ensure that the real part of the expression equals zero. ### Step-by-Step Solution 1. **Identify the expression**: We start with the expression: \[ z = \frac{\tan \theta - i \left( \sin \frac{\theta}{2} + \cos \frac{\theta}{2} \right)}{1 + 2i \sin \frac{\theta}{2}} \] 2. **Multiply numerator and denominator by the conjugate of the denominator**: The conjugate of the denominator \( 1 + 2i \sin \frac{\theta}{2} \) is \( 1 - 2i \sin \frac{\theta}{2} \). Therefore, we multiply both the numerator and denominator by this conjugate: \[ z = \frac{(\tan \theta - i \left( \sin \frac{\theta}{2} + \cos \frac{\theta}{2} \right))(1 - 2i \sin \frac{\theta}{2})}{(1 + 2i \sin \frac{\theta}{2})(1 - 2i \sin \frac{\theta}{2})} \] 3. **Simplify the denominator**: The denominator simplifies as follows: \[ (1 + 2i \sin \frac{\theta}{2})(1 - 2i \sin \frac{\theta}{2}) = 1 - (2i \sin \frac{\theta}{2})^2 = 1 + 4 \sin^2 \frac{\theta}{2} \] 4. **Expand the numerator**: Now we expand the numerator: \[ (\tan \theta)(1) - (\tan \theta)(2i \sin \frac{\theta}{2}) - i\left( \sin \frac{\theta}{2} + \cos \frac{\theta}{2} \right)(1) + i\left( \sin \frac{\theta}{2} + \cos \frac{\theta}{2} \right)(2i \sin \frac{\theta}{2}) \] This simplifies to: \[ \tan \theta - 2i \tan \theta \sin \frac{\theta}{2} - i \left( \sin \frac{\theta}{2} + \cos \frac{\theta}{2} \right) - 2 \sin^2 \frac{\theta}{2} - 2i \sin \frac{\theta}{2} \cos \frac{\theta}{2} \] 5. **Combine real and imaginary parts**: The real part of the numerator is: \[ \tan \theta - 2 \sin^2 \frac{\theta}{2} \] The imaginary part is: \[ -2 \tan \theta \sin \frac{\theta}{2} - \left( \sin \frac{\theta}{2} + \cos \frac{\theta}{2} \right) - 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \] 6. **Set the real part to zero**: For \( z \) to be purely imaginary, we set the real part to zero: \[ \tan \theta - 2 \sin^2 \frac{\theta}{2} = 0 \] This gives: \[ \tan \theta = 2 \sin^2 \frac{\theta}{2} \] 7. **Use the identity**: Recall that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) and \( \sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \): \[ \frac{\sin \theta}{\cos \theta} = 2 \sin^2 \frac{\theta}{2} \] 8. **Use double angle identities**: Substitute \( \sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \) into the equation: \[ \frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\cos \theta} = 2 \sin^2 \frac{\theta}{2} \] This simplifies to: \[ \frac{\cos \frac{\theta}{2}}{\cos \theta} = 1 \] Which implies: \[ \cos \theta = \cos \frac{\theta}{2} \] 9. **Solve for \( \theta \)**: The solutions to \( \cos \theta = \cos \frac{\theta}{2} \) yield: \[ \theta = 2n\pi \quad \text{or} \quad \theta = n\pi + \frac{\pi}{4} \] ### Final Answer Thus, the values of \( \theta \) for which the expression is purely imaginary are: \[ \theta = 2n\pi \quad \text{and} \quad \theta = n\pi + \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If (1+i cos theta)/(1-2i cos theta) is purely imaginary then theta =

(3+2i sin theta)/(1-2i sin theta) will be purely imaginary,then find theta?

(3+2i sin theta)/(1-2i sin theta) will be purely imaginary,then find theta

Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) real (b) purely imaginary

Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 isin theta ) is purely imaginary } Then the sum of the elements in A is

Prove that (sin theta - 2 sin^(3) theta)/(2 cos^(3) theta - cos theta) = tan theta

Prove that: (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos theta) tan theta .

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |

  2. The following in the form A + i B ( cos 2 theta + i sin 2 theta )^(-...

    Text Solution

    |

  3. If x = cos theta + i sin theta , y = cos phi + i sin phi z = cos Ps...

    Text Solution

    |

  4. If a = cos alpha + i sin alpha , b = cos beta + i sin beta , " then ...

    Text Solution

    |

  5. If cos A + cos B + cos C = 0, sin A + sin B + sin C = 0 and A + B +...

    Text Solution

    |

  6. If cos A + cos B + cos C = 0 = sin A + sin B + sin C , then

    Text Solution

    |

  7. The general value of x which satisfies the equation ( cos x + i sin ...

    Text Solution

    |

  8. Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) re...

    Text Solution

    |

  9. If ( tan theta - i [ sin ( theta // 2) + cos ( theta // 2) ])/( 1 + 2...

    Text Solution

    |

  10. Let f(p) ( beta) = ( cos "" (beta)/( p^(2)) + i sin "" (beta)/( p^(2)...

    Text Solution

    |

  11. The continued product of the four values of [ cos (pi/ 3) + i sin (...

    Text Solution

    |

  12. If a = cos alpha + i sin alpha, b = cos beta + i sin beta , " then " ...

    Text Solution

    |

  13. If alpha , beta be the roots of the the equation x^(2) - 2 x + 2 =...

    Text Solution

    |

  14. The complex number z has argZ = theta ,0 lt theta lt (pi)/(2) and sat...

    Text Solution

    |

  15. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  16. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  17. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  18. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  19. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  20. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1+ omega ...

    Text Solution

    |