Home
Class 12
MATHS
The continued product of the four valu...

The continued product of the four values of `[ cos (pi/ 3) + i sin (pi/ 3)]^(3//4)` is

A

1

B

2

C

3

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the continued product of the four values of \([ \cos(\pi/3) + i \sin(\pi/3)]^{3/4}\), we will follow these steps: ### Step 1: Identify the complex number in polar form The given expression can be rewritten using Euler's formula: \[ z = \cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right) = e^{i \frac{\pi}{3}} \] ### Step 2: Raise the complex number to the power of \( \frac{3}{4} \) Now, we raise \( z \) to the power of \( \frac{3}{4} \): \[ z^{\frac{3}{4}} = \left(e^{i \frac{\pi}{3}}\right)^{\frac{3}{4}} = e^{i \frac{3\pi}{12}} = e^{i \frac{\pi}{4}} \] ### Step 3: Use the general form for the \( n \)-th roots of a complex number The \( n \)-th roots of a complex number in polar form \( e^{i\theta} \) can be expressed as: \[ z_k = e^{i\left(\frac{\pi}{4} + \frac{2k\pi}{n}\right)} \quad \text{for } k = 0, 1, 2, \ldots, n-1 \] Here, \( n = 4 \), so we have: \[ z_k = e^{i\left(\frac{\pi}{4} + \frac{2k\pi}{4}\right)} = e^{i\left(\frac{\pi}{4} + \frac{k\pi}{2}\right)} \] ### Step 4: Calculate the four values For \( k = 0, 1, 2, 3 \): - For \( k = 0 \): \( z_0 = e^{i \frac{\pi}{4}} \) - For \( k = 1 \): \( z_1 = e^{i \left(\frac{\pi}{4} + \frac{\pi}{2}\right)} = e^{i \frac{3\pi}{4}} \) - For \( k = 2 \): \( z_2 = e^{i \left(\frac{\pi}{4} + \pi\right)} = e^{i \frac{5\pi}{4}} \) - For \( k = 3 \): \( z_3 = e^{i \left(\frac{\pi}{4} + \frac{3\pi}{2}\right)} = e^{i \frac{7\pi}{4}} \) ### Step 5: Find the product of these values Now we need to find the product: \[ P = z_0 \cdot z_1 \cdot z_2 \cdot z_3 = e^{i \frac{\pi}{4}} \cdot e^{i \frac{3\pi}{4}} \cdot e^{i \frac{5\pi}{4}} \cdot e^{i \frac{7\pi}{4}} \] Using the property of exponents: \[ P = e^{i\left(\frac{\pi}{4} + \frac{3\pi}{4} + \frac{5\pi}{4} + \frac{7\pi}{4}\right)} \] ### Step 6: Simplify the exponent Calculating the sum of the angles: \[ \frac{\pi}{4} + \frac{3\pi}{4} + \frac{5\pi}{4} + \frac{7\pi}{4} = \frac{16\pi}{4} = 4\pi \] Thus, we have: \[ P = e^{i 4\pi} \] ### Step 7: Evaluate \( e^{i 4\pi} \) Since \( e^{i 4\pi} = \cos(4\pi) + i \sin(4\pi) = 1 + 0i = 1 \). ### Final Answer The continued product of the four values is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

z=(1-i)/(cos(pi/3)+i sin(pi/3))

Find the value of (cos pi+i sin pi)

The principal value of cos^(-1)(cos 2pi/3)+ sin^(-1) sin(2pi/3) is

Find the value of cos^(-1) ( cos . (2pi)/3) + sin^(-1) ( sin . (2pi)/3) .

.Modulus of the function z=(i-1)/(cos pi/3+i sin pi/3) is

cos((3pi)/4+x)-sin(pi/4-x)=?

If i=sqrt(-1) then (cos(pi/3)+i sin(pi/3))^3=

Value of cos^3 (pi/8)cos^3 ((3pi)/8) + sin^3 (pi/8)sin^3 ((3pi)/8) is

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

sin pi/3 = 2sin pi/6 cos pi/6

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |

  2. The following in the form A + i B ( cos 2 theta + i sin 2 theta )^(-...

    Text Solution

    |

  3. If x = cos theta + i sin theta , y = cos phi + i sin phi z = cos Ps...

    Text Solution

    |

  4. If a = cos alpha + i sin alpha , b = cos beta + i sin beta , " then ...

    Text Solution

    |

  5. If cos A + cos B + cos C = 0, sin A + sin B + sin C = 0 and A + B +...

    Text Solution

    |

  6. If cos A + cos B + cos C = 0 = sin A + sin B + sin C , then

    Text Solution

    |

  7. The general value of x which satisfies the equation ( cos x + i sin ...

    Text Solution

    |

  8. Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) re...

    Text Solution

    |

  9. If ( tan theta - i [ sin ( theta // 2) + cos ( theta // 2) ])/( 1 + 2...

    Text Solution

    |

  10. Let f(p) ( beta) = ( cos "" (beta)/( p^(2)) + i sin "" (beta)/( p^(2)...

    Text Solution

    |

  11. The continued product of the four values of [ cos (pi/ 3) + i sin (...

    Text Solution

    |

  12. If a = cos alpha + i sin alpha, b = cos beta + i sin beta , " then " ...

    Text Solution

    |

  13. If alpha , beta be the roots of the the equation x^(2) - 2 x + 2 =...

    Text Solution

    |

  14. The complex number z has argZ = theta ,0 lt theta lt (pi)/(2) and sat...

    Text Solution

    |

  15. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  16. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  17. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  18. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  19. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  20. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1+ omega ...

    Text Solution

    |