Home
Class 12
MATHS
If a = cos alpha + i sin alpha, b = cos...

If ` a = cos alpha + i sin alpha, b = cos beta + i sin beta , " then " ( a- b)/( a+ b) =`

A

`itan"" (alpha - beta)/( 2)`

B

`icos""(alpha - beta)/(2)`

C

`tan"" (alpha- beta)/(2)`

D

`cot"" (alpha - beta)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression \(\frac{a - b}{a + b}\) where \(a = \cos \alpha + i \sin \alpha\) and \(b = \cos \beta + i \sin \beta\). ### Step-by-step Solution: 1. **Identify the expressions for \(a\) and \(b\)**: \[ a = \cos \alpha + i \sin \alpha, \quad b = \cos \beta + i \sin \beta \] 2. **Calculate \(a - b\)**: \[ a - b = (\cos \alpha - \cos \beta) + i(\sin \alpha - \sin \beta) \] 3. **Use the trigonometric identities**: We can use the identities for the difference of cosines and sines: \[ \cos \alpha - \cos \beta = -2 \sin\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right) \] \[ \sin \alpha - \sin \beta = 2 \cos\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right) \] Thus, we can rewrite \(a - b\): \[ a - b = -2 \sin\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right) + i \cdot 2 \cos\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right) \] \[ = 2 \sin\left(\frac{\alpha - \beta}{2}\right) \left(-\sin\left(\frac{\alpha + \beta}{2}\right) + i \cos\left(\frac{\alpha + \beta}{2}\right)\right) \] 4. **Calculate \(a + b\)**: \[ a + b = (\cos \alpha + \cos \beta) + i(\sin \alpha + \sin \beta) \] Using the sum identities: \[ \cos \alpha + \cos \beta = 2 \cos\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right) \] \[ \sin \alpha + \sin \beta = 2 \sin\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right) \] Therefore, we can write: \[ a + b = 2 \cos\left(\frac{\alpha - \beta}{2}\right) \left(\cos\left(\frac{\alpha + \beta}{2}\right) + i \sin\left(\frac{\alpha + \beta}{2}\right)\right) \] \[ = 2 \cos\left(\frac{\alpha - \beta}{2}\right) e^{i \frac{\alpha + \beta}{2}} \] 5. **Combine the results**: Now we can substitute \(a - b\) and \(a + b\) into the original expression: \[ \frac{a - b}{a + b} = \frac{2 \sin\left(\frac{\alpha - \beta}{2}\right) \left(-\sin\left(\frac{\alpha + \beta}{2}\right) + i \cos\left(\frac{\alpha + \beta}{2}\right)\right)}{2 \cos\left(\frac{\alpha - \beta}{2}\right) e^{i \frac{\alpha + \beta}{2}}} \] \[ = \frac{\sin\left(\frac{\alpha - \beta}{2}\right)}{\cos\left(\frac{\alpha - \beta}{2}\right)} \cdot \frac{-\sin\left(\frac{\alpha + \beta}{2}\right) + i \cos\left(\frac{\alpha + \beta}{2}\right)}{e^{i \frac{\alpha + \beta}{2}}} \] 6. **Simplify the expression**: The expression simplifies to: \[ = \tan\left(\frac{\alpha - \beta}{2}\right) \cdot e^{-i \frac{\alpha + \beta}{2}} \] ### Final Result: Thus, the final result is: \[ \frac{a - b}{a + b} = i \tan\left(\frac{\alpha - \beta}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If x=cos alpha+i sin alpha, y=cos beta+i sin beta then " (y)/(x)-(x)/(y)=

If alpha=cos alpha+i sin alpha,b=cos beta+i sin beta,c=cos gamma+i sin gamma and (b)/(c)+(c)/(a)+(a)/(b)=1 then cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=

Under rotation of axes through theta , x cosalpha + ysinalpha=P changes to Xcos beta + Y sin beta=P then . (a) cos beta = cos (alpha - theta) (b) cos alpha= cos( beta - theta) (c) sin beta = sin (alpha - theta) (d) sin alpha = sin ( beta - theta)

Let A = (cos alpha, sin alpha), B = (cos beta , sin beta), C = (cos gamma, sin gamma) . If origin is the orthocentre of the Delta ABC , then the value of sum cos (2 alpha - beta - gamma)= ____________

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

The real part of determinant of [[cos + i sin alpha, cos beta + i sin beta],[sin beta + i cos beta, sin alpha + i cos alpha]] is

If (x) / (a) cos alpha + (y) / (b) sin alpha = 1, (x) / (a) cos beta + (y) / (b) sin beta = 1 and (cos alpha cos beta) / (a ^ (2)) + (without alpha without beta) / (b ^ (2)) = 0 then

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |

  2. The following in the form A + i B ( cos 2 theta + i sin 2 theta )^(-...

    Text Solution

    |

  3. If x = cos theta + i sin theta , y = cos phi + i sin phi z = cos Ps...

    Text Solution

    |

  4. If a = cos alpha + i sin alpha , b = cos beta + i sin beta , " then ...

    Text Solution

    |

  5. If cos A + cos B + cos C = 0, sin A + sin B + sin C = 0 and A + B +...

    Text Solution

    |

  6. If cos A + cos B + cos C = 0 = sin A + sin B + sin C , then

    Text Solution

    |

  7. The general value of x which satisfies the equation ( cos x + i sin ...

    Text Solution

    |

  8. Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) re...

    Text Solution

    |

  9. If ( tan theta - i [ sin ( theta // 2) + cos ( theta // 2) ])/( 1 + 2...

    Text Solution

    |

  10. Let f(p) ( beta) = ( cos "" (beta)/( p^(2)) + i sin "" (beta)/( p^(2)...

    Text Solution

    |

  11. The continued product of the four values of [ cos (pi/ 3) + i sin (...

    Text Solution

    |

  12. If a = cos alpha + i sin alpha, b = cos beta + i sin beta , " then " ...

    Text Solution

    |

  13. If alpha , beta be the roots of the the equation x^(2) - 2 x + 2 =...

    Text Solution

    |

  14. The complex number z has argZ = theta ,0 lt theta lt (pi)/(2) and sat...

    Text Solution

    |

  15. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  16. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  17. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  18. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  19. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  20. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1+ omega ...

    Text Solution

    |