Home
Class 12
MATHS
If alpha , beta be the roots of the t...

If ` alpha , beta ` be the roots of the the equation ` x^(2) - 2 x + 2 = 0 ` and ` cot theta = x + 1 " then " (( x + alpha )^(n) - ( x + beta)^(n))/( alpha - beta) =`

A

`(cos n theta)/( sin^(n) theta)`

B

`(sin n theta)/(cos ^(n) theta)`

C

`(sin n theta)/(sin^(n)theta)`

D

`(cos n theta)/(cos ^(n) theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript and derive the required expression. ### Step 1: Find the roots of the quadratic equation The given quadratic equation is: \[ x^2 - 2x + 2 = 0 \] Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -2, c = 2 \). Calculating the discriminant: \[ b^2 - 4ac = (-2)^2 - 4 \cdot 1 \cdot 2 = 4 - 8 = -4 \] Now substituting into the quadratic formula: \[ x = \frac{2 \pm \sqrt{-4}}{2 \cdot 1} = \frac{2 \pm 2i}{2} = 1 \pm i \] Thus, the roots are: \[ \alpha = 1 + i \quad \text{and} \quad \beta = 1 - i \] ### Step 2: Express \( x \) in terms of \( \theta \) Given that: \[ \cot \theta = x + 1 \] We can rearrange this to find \( x \): \[ x = \cot \theta - 1 \] ### Step 3: Calculate \( x + \alpha \) and \( x + \beta \) Substituting \( x \) into \( x + \alpha \): \[ x + \alpha = (\cot \theta - 1) + (1 + i) = \cot \theta + i \] Now for \( x + \beta \): \[ x + \beta = (\cot \theta - 1) + (1 - i) = \cot \theta - i \] ### Step 4: Raise to the power of \( n \) Now we need to raise both expressions to the power of \( n \): \[ (x + \alpha)^n = (\cot \theta + i)^n \] \[ (x + \beta)^n = (\cot \theta - i)^n \] ### Step 5: Substitute into the expression We need to evaluate: \[ \frac{(x + \alpha)^n - (x + \beta)^n}{\alpha - \beta} \] First, calculate \( \alpha - \beta \): \[ \alpha - \beta = (1 + i) - (1 - i) = 2i \] Now substituting back: \[ \frac{(\cot \theta + i)^n - (\cot \theta - i)^n}{2i} \] ### Step 6: Simplify the expression Using the identity for the difference of powers: \[ a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \ldots + b^{n-1}) \] Let \( a = \cot \theta + i \) and \( b = \cot \theta - i \): \[ a - b = 2i \] Thus: \[ \frac{(a - b)(a^{n-1} + a^{n-2}b + \ldots + b^{n-1})}{2i} = a^{n-1} + a^{n-2}b + \ldots + b^{n-1} \] ### Step 7: Final Result The final result is: \[ \frac{(\cot \theta + i)^n - (\cot \theta - i)^n}{2i} = \frac{2i \sin(n\theta)}{2i} = \sin(n\theta) \] ### Conclusion Thus, the final answer is: \[ \sin(n\theta) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

If alpha amd beta are the roots of the equation 3x^(2) - 2x - 8 = 0 then alpha^(2) + alpha beta + beta^(2) = "_____" .

If alpha,beta are the roots of the equation x^(2)-p(x+1)-c=0, then (alpha+1)(beta+1)=

If alpha,beta " are the roots of the equation "x^(2) - 2x - 1 =0, "then what is the value of " alpha^(2)beta^(-2)+alpha^(-2)beta^(2)

If alpha " and " beta are the roots of the quadratic equation x^2 -5x +6 =0 then find alpha/beta + beta/alpha

If alpha and beta are the roots of the equation 3x^(2)+8x+2=0 then ((1)/(alpha)+(1)/(beta))=?

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |

  2. The following in the form A + i B ( cos 2 theta + i sin 2 theta )^(-...

    Text Solution

    |

  3. If x = cos theta + i sin theta , y = cos phi + i sin phi z = cos Ps...

    Text Solution

    |

  4. If a = cos alpha + i sin alpha , b = cos beta + i sin beta , " then ...

    Text Solution

    |

  5. If cos A + cos B + cos C = 0, sin A + sin B + sin C = 0 and A + B +...

    Text Solution

    |

  6. If cos A + cos B + cos C = 0 = sin A + sin B + sin C , then

    Text Solution

    |

  7. The general value of x which satisfies the equation ( cos x + i sin ...

    Text Solution

    |

  8. Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) re...

    Text Solution

    |

  9. If ( tan theta - i [ sin ( theta // 2) + cos ( theta // 2) ])/( 1 + 2...

    Text Solution

    |

  10. Let f(p) ( beta) = ( cos "" (beta)/( p^(2)) + i sin "" (beta)/( p^(2)...

    Text Solution

    |

  11. The continued product of the four values of [ cos (pi/ 3) + i sin (...

    Text Solution

    |

  12. If a = cos alpha + i sin alpha, b = cos beta + i sin beta , " then " ...

    Text Solution

    |

  13. If alpha , beta be the roots of the the equation x^(2) - 2 x + 2 =...

    Text Solution

    |

  14. The complex number z has argZ = theta ,0 lt theta lt (pi)/(2) and sat...

    Text Solution

    |

  15. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  16. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  17. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  18. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  19. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  20. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1+ omega ...

    Text Solution

    |