Home
Class 12
MATHS
1+ i = sqrt(2) ( cos "" (pi)/( 4) + i si...

` 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) `
`1 + omega + omega^(2) = 0, omega = ((2 pi i)/3)`
`( 1+ x)^(n) = P_(0) + P_(1) x + P_(2) x^(2) + P_(3) x^(3) + P_(4) x ^(4) + . . . + P_(n) x^(n)`
`p _(0) - p_(2) + p_(4) - . . . = 2^(n//2) cos ( n pi // 4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the provided equations and derive the necessary results. ### Step 1: Understanding the given equations We have the following equations: 1. \( 1 + i = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \) 2. \( 1 + \omega + \omega^2 = 0 \), where \( \omega = e^{\frac{2\pi i}{3}} \) 3. The binomial expansion: \( (1 + x)^n = P_0 + P_1 x + P_2 x^2 + P_3 x^3 + P_4 x^4 + \ldots + P_n x^n \) 4. The result: \( P_0 - P_2 + P_4 - \ldots = 2^{n/2} \cos \left( \frac{n \pi}{4} \right) \) ### Step 2: Verify the first equation We can verify the first equation: \[ 1 + i = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \] Calculating the right side: \[ \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \quad \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \] Thus, \[ \sqrt{2} \left( \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = 1 + i \] This confirms that the first equation is true. ### Step 3: Analyze the second equation The second equation states: \[ 1 + \omega + \omega^2 = 0 \] This is the property of the cube roots of unity, where \( \omega = e^{\frac{2\pi i}{3}} \) and \( \omega^2 = e^{\frac{4\pi i}{3}} \). This confirms that the sum of the roots is zero. ### Step 4: Binomial expansion The binomial expansion of \( (1 + x)^n \) gives us: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] where \( P_k = \binom{n}{k} \). ### Step 5: Calculate \( P_0 - P_2 + P_4 - \ldots \) To find \( P_0 - P_2 + P_4 - \ldots \), we can use the property of the binomial coefficients: \[ P_0 = \binom{n}{0}, \quad P_2 = \binom{n}{2}, \quad P_4 = \binom{n}{4}, \ldots \] The alternating sum of the coefficients can be expressed as: \[ \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{2k} \] ### Step 6: Use the result The result states: \[ P_0 - P_2 + P_4 - \ldots = 2^{n/2} \cos \left( \frac{n \pi}{4} \right) \] This is derived from the binomial theorem and properties of complex numbers. ### Conclusion We have verified the equations and derived the necessary results. The statement is true.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If omega = "cos"(pi)/(n) + "i sin" (pi)/(n) , then value of 1 + omega + omega^(2) +...+omega^(n-1) is

if (1+x)^(n)=p_(0)+p_(1)x+p_(2)x^(2)+--+p_(n)x^(n) the value of p_(1)-p_(3)+p_(5)+...

If (1+x)^(n)=p_(0)+p_(1)x+p_(2)x^(2)+....+p_(n)x^(n) then (p_(0)-p_(2)+p_(4)-p_(6)+....)/(p_(1)-p_(3)+p_(5)-p_(7)+......)=

Let omega_(n)=cos((2 pi)/(n))+i sin((2 pi)/(n)),i^(2)=-1 then (x+y omega_(3)+z omega_(3)^(2))(x+y omega_(3)^(2)+z omega_(3))=

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |

  2. The following in the form A + i B ( cos 2 theta + i sin 2 theta )^(-...

    Text Solution

    |

  3. If x = cos theta + i sin theta , y = cos phi + i sin phi z = cos Ps...

    Text Solution

    |

  4. If a = cos alpha + i sin alpha , b = cos beta + i sin beta , " then ...

    Text Solution

    |

  5. If cos A + cos B + cos C = 0, sin A + sin B + sin C = 0 and A + B +...

    Text Solution

    |

  6. If cos A + cos B + cos C = 0 = sin A + sin B + sin C , then

    Text Solution

    |

  7. The general value of x which satisfies the equation ( cos x + i sin ...

    Text Solution

    |

  8. Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) re...

    Text Solution

    |

  9. If ( tan theta - i [ sin ( theta // 2) + cos ( theta // 2) ])/( 1 + 2...

    Text Solution

    |

  10. Let f(p) ( beta) = ( cos "" (beta)/( p^(2)) + i sin "" (beta)/( p^(2)...

    Text Solution

    |

  11. The continued product of the four values of [ cos (pi/ 3) + i sin (...

    Text Solution

    |

  12. If a = cos alpha + i sin alpha, b = cos beta + i sin beta , " then " ...

    Text Solution

    |

  13. If alpha , beta be the roots of the the equation x^(2) - 2 x + 2 =...

    Text Solution

    |

  14. The complex number z has argZ = theta ,0 lt theta lt (pi)/(2) and sat...

    Text Solution

    |

  15. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  16. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  17. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  18. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  19. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  20. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1+ omega ...

    Text Solution

    |