Home
Class 12
MATHS
1 + i = sqrt(2) ( cos "" (pi)/( 4) + i s...

`1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) `
`1 + omega + omega^(2) = 0, omega = ((2 pi i)/3)`
`( 1+ x)^(n) = P_(0) + P_(1) x + P_(2) x^(2) + P_(3) x^(3) + P_(4) x ^(4) + . . . + P_(n) x^(n)`
` p_(0) + p_(4) + p_(8) + . . . = 2 ^(n//2-1) cos "" ( n pi)/( 4) + 2 ^(n-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the expressions given and derive the required results systematically. ### Step 1: Understand the given expressions We have the following key expressions: 1. \( 1 + i = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \) 2. \( 1 + \omega + \omega^2 = 0 \) where \( \omega = e^{\frac{2\pi i}{3}} \) 3. The binomial expansion \( (1 + x)^n = P_0 + P_1 x + P_2 x^2 + P_3 x^3 + P_4 x^4 + \ldots + P_n x^n \) 4. The sum \( P_0 + P_4 + P_8 + \ldots = 2^{\frac{n}{2}-1} \cos \frac{n \pi}{4} + 2^{n-2} \) ### Step 2: Verify the first expression We start with the expression \( 1 + i \): - We can express \( 1 + i \) in polar form: \[ r = |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \] The angle \( \theta \) is given by: \[ \theta = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4} \] - Therefore, we can write: \[ 1 + i = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \] ### Step 3: Analyze the second expression The expression \( 1 + \omega + \omega^2 = 0 \) indicates that \( \omega \) is a cube root of unity: - The roots of the equation \( x^3 - 1 = 0 \) are \( 1, \omega, \omega^2 \). - Since \( \omega = e^{\frac{2\pi i}{3}} \), we know: \[ \omega^2 = e^{\frac{4\pi i}{3}} \] - Thus, \( 1 + \omega + \omega^2 = 0 \) is satisfied. ### Step 4: Binomial expansion The binomial expansion \( (1 + x)^n \) gives us: \[ (1 + x)^n = P_0 + P_1 x + P_2 x^2 + P_3 x^3 + P_4 x^4 + \ldots + P_n x^n \] Where \( P_k = \binom{n}{k} \). ### Step 5: Finding \( P_0 + P_4 + P_8 + \ldots \) To find \( P_0 + P_4 + P_8 + \ldots \), we can use the fact that: - \( P_k \) corresponds to the coefficients in the expansion. - We can evaluate \( (1 + x)^n + (1 - x)^n \) to isolate the even coefficients: \[ (1 + x)^n + (1 - x)^n = 2(P_0 + P_2 x^2 + P_4 x^4 + \ldots) \] - Setting \( x = 1 \): \[ 2^n + 0 = 2(P_0 + P_2 + P_4 + \ldots) \] This simplifies to: \[ P_0 + P_2 + P_4 + \ldots = 2^{n-1} \] ### Step 6: Using complex numbers Next, we can evaluate \( (1 + i)^n + (1 - i)^n \): - Using the polar form: \[ (1 + i)^n = \left(\sqrt{2}\right)^n \left( \cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right) \] \[ (1 - i)^n = \left(\sqrt{2}\right)^n \left( \cos \frac{n\pi}{4} - i \sin \frac{n\pi}{4} \right) \] - Adding these gives: \[ 2^{\frac{n}{2}} \cos \frac{n\pi}{4} \] ### Step 7: Final expression Combining the results: \[ P_0 + P_4 + P_8 + \ldots = 2^{\frac{n}{2}-1} \cos \frac{n\pi}{4} + 2^{n-2} \] ### Conclusion Thus, we have verified the statement: \[ P_0 + P_4 + P_8 + \ldots = 2^{\frac{n}{2}-1} \cos \frac{n\pi}{4} + 2^{n-2} \] is true.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If omega = "cos"(pi)/(n) + "i sin" (pi)/(n) , then value of 1 + omega + omega^(2) +...+omega^(n-1) is

if (1+x)^(n)=p_(0)+p_(1)x+p_(2)x^(2)+--+p_(n)x^(n) the value of p_(1)-p_(3)+p_(5)+...

If (1+x)^(n)=p_(0)+p_(1)x+p_(2)x^(2)+....+p_(n)x^(n) then (p_(0)-p_(2)+p_(4)-p_(6)+....)/(p_(1)-p_(3)+p_(5)-p_(7)+......)=

Let omega_(n)=cos((2 pi)/(n))+i sin((2 pi)/(n)),i^(2)=-1 then (x+y omega_(3)+z omega_(3)^(2))(x+y omega_(3)^(2)+z omega_(3))=

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If x^(2) - 2 x cos theta + 1 = 0 " then " x^(2 n) - 2 x ^(n) cos n th...

    Text Solution

    |

  2. The following in the form A + i B ( cos 2 theta + i sin 2 theta )^(-...

    Text Solution

    |

  3. If x = cos theta + i sin theta , y = cos phi + i sin phi z = cos Ps...

    Text Solution

    |

  4. If a = cos alpha + i sin alpha , b = cos beta + i sin beta , " then ...

    Text Solution

    |

  5. If cos A + cos B + cos C = 0, sin A + sin B + sin C = 0 and A + B +...

    Text Solution

    |

  6. If cos A + cos B + cos C = 0 = sin A + sin B + sin C , then

    Text Solution

    |

  7. The general value of x which satisfies the equation ( cos x + i sin ...

    Text Solution

    |

  8. Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) re...

    Text Solution

    |

  9. If ( tan theta - i [ sin ( theta // 2) + cos ( theta // 2) ])/( 1 + 2...

    Text Solution

    |

  10. Let f(p) ( beta) = ( cos "" (beta)/( p^(2)) + i sin "" (beta)/( p^(2)...

    Text Solution

    |

  11. The continued product of the four values of [ cos (pi/ 3) + i sin (...

    Text Solution

    |

  12. If a = cos alpha + i sin alpha, b = cos beta + i sin beta , " then " ...

    Text Solution

    |

  13. If alpha , beta be the roots of the the equation x^(2) - 2 x + 2 =...

    Text Solution

    |

  14. The complex number z has argZ = theta ,0 lt theta lt (pi)/(2) and sat...

    Text Solution

    |

  15. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  16. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  17. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  18. 1 + i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega...

    Text Solution

    |

  19. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1 + omega ...

    Text Solution

    |

  20. 1+ i = sqrt(2) ( cos "" (pi)/( 4) + i sin "" (pi)/( 4)) 1+ omega ...

    Text Solution

    |