Home
Class 12
MATHS
If alpha, beta are the roots of the e...

If ` alpha, beta ` are the roots of the equations `x^(2) - 2 x + 4 = 0 , " then " alpha ^(n) + beta^(n) = 2 ^(n + 1) cos ( n phi // 3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( \alpha^n + \beta^n \) where \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 - 2x + 4 = 0 \). ### Step 1: Find the roots of the quadratic equation The roots of the equation \( x^2 - 2x + 4 = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -2 \), and \( c = 4 \). Calculating the discriminant: \[ b^2 - 4ac = (-2)^2 - 4 \cdot 1 \cdot 4 = 4 - 16 = -12 \] Since the discriminant is negative, the roots are complex. Now substituting into the quadratic formula: \[ x = \frac{2 \pm \sqrt{-12}}{2} = \frac{2 \pm 2\sqrt{3}i}{2} = 1 \pm \sqrt{3}i \] Thus, the roots are: \[ \alpha = 1 + \sqrt{3}i \quad \text{and} \quad \beta = 1 - \sqrt{3}i \] ### Step 2: Express the roots in polar form We can express \( \alpha \) and \( \beta \) in polar form. The modulus \( r \) of \( \alpha \) is: \[ r = \sqrt{(1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] The argument \( \phi \) can be calculated as: \[ \phi = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3} \] Thus, we can write: \[ \alpha = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 2e^{i\frac{\pi}{3}} \] Similarly, for \( \beta \): \[ \beta = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) = 2e^{-i\frac{\pi}{3}} \] ### Step 3: Calculate \( \alpha^n + \beta^n \) Using the polar forms: \[ \alpha^n = \left(2e^{i\frac{\pi}{3}}\right)^n = 2^n e^{i\frac{n\pi}{3}} \] \[ \beta^n = \left(2e^{-i\frac{\pi}{3}}\right)^n = 2^n e^{-i\frac{n\pi}{3}} \] Now, adding these two: \[ \alpha^n + \beta^n = 2^n e^{i\frac{n\pi}{3}} + 2^n e^{-i\frac{n\pi}{3}} = 2^n \left(e^{i\frac{n\pi}{3}} + e^{-i\frac{n\pi}{3}}\right) \] Using Euler's formula, we know: \[ e^{i\theta} + e^{-i\theta} = 2\cos\theta \] Thus, \[ \alpha^n + \beta^n = 2^n \cdot 2 \cos\left(\frac{n\pi}{3}\right) = 2^{n+1} \cos\left(\frac{n\pi}{3}\right) \] ### Final Result We conclude that: \[ \alpha^n + \beta^n = 2^{n+1} \cos\left(\frac{n\pi}{3}\right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) (M.C.Q) |42 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation x^(2)-2x+4=0, prove that alpha^(n)+beta^(n)=2^(n+1)cos(n(pi)/(3))

If alpha,beta are the roots of an equation x^(2)-2x cos theta+1=0 then the equation having alpha^(n) and beta^(n) is

If alpha,beta are the roots of the equation x^2-2x+4=0 , find alpha^(n)+beta^(n) for (a) n=3k, k in N (b) n ne 3k, k in N

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

If alpha,beta are the roots of the equation x^(2)-(1+n^(2))x+(1)/(2)(1+n^(2)+n^(4))=0 then alpha^(2)+beta^(2) is

Let alpha and beta be the roots of the equation 5x^2 + 6x-2 =0 if S_(n ) = alpha ^(n) + beta^(n) , n= 1,2,3 ..,, then :