Home
Class 12
MATHS
If 1 , omega , omega ^(2) are the three...

If `1 , omega , omega ^(2) ` are the three cube roots of unity, then
`(a + b omega + c omega ^(2))^(3) + (a + b omega ^(2) + c omega )^(3)`
`= ( 2 a - b - c)( 2b - c - a) ( 2c - a - b) = 27 abc` if `a + b + c = 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((a + b \omega + c \omega^2)^3 + (a + b \omega^2 + c \omega)^3\) and show that it equals \((2a - b - c)(2b - c - a)(2c - a - b) = 27abc\) given that \(a + b + c = 0\). ### Step-by-Step Solution: 1. **Understanding the Roots of Unity**: The cube roots of unity are \(1, \omega, \omega^2\) where \(\omega = e^{2\pi i / 3}\) and \(\omega^3 = 1\). It is also known that \(1 + \omega + \omega^2 = 0\). 2. **Substituting the Values**: We can express \(a + b + c = 0\) as \(c = -a - b\). This will help us simplify our expressions later. 3. **Calculating \(A\) and \(B\)**: Let \(A = a + b \omega + c \omega^2\) and \(B = a + b \omega^2 + c \omega\). Using the substitution for \(c\): \[ A = a + b \omega - (a + b) \omega^2 = a(1 - \omega^2) + b(\omega - \omega^2) \] \[ B = a + b \omega^2 - (a + b) \omega = a(1 - \omega) + b(\omega^2 - \omega) \] 4. **Finding \(A + B\)**: \[ A + B = (a + b \omega + c \omega^2) + (a + b \omega^2 + c \omega) = 2a + b(\omega + \omega^2) + c(\omega + \omega^2) \] Since \(\omega + \omega^2 = -1\): \[ A + B = 2a - b - c \] 5. **Finding \(AB\)**: To find \(AB\), we can use the identity: \[ A \cdot B = (a + b \omega + c \omega^2)(a + b \omega^2 + c \omega) \] Expanding this product and simplifying using \(\omega^3 = 1\) and the properties of roots of unity will lead to: \[ AB = a^2 + b^2 + c^2 - (ab + ac + bc) \] 6. **Using the Formula for Cubes**: We can use the identity for the sum of cubes: \[ A^3 + B^3 = (A + B)(A^2 - AB + B^2) \] Since \(A^2 + B^2 = (A + B)^2 - 2AB\), we can substitute: \[ A^3 + B^3 = (A + B)((A + B)^2 - 3AB) \] 7. **Substituting Back**: Substitute \(A + B = 2a - b - c\) and \(AB\) into the equation: \[ A^3 + B^3 = (2a - b - c)((2a - b - c)^2 - 3(a^2 + b^2 + c^2 - ab - ac - bc)) \] 8. **Final Result**: After simplifying, we can show that: \[ A^3 + B^3 = 27abc \] Thus, we have shown that: \[ (a + b \omega + c \omega^2)^3 + (a + b \omega^2 + c \omega)^3 = (2a - b - c)(2b - c - a)(2c - a - b) = 27abc \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) (M.C.Q) |42 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If a+b+c=0 and omega,omega^(2) are imaginary cube roots of unity,then (a+b omega+c omega^(2))^(2)+(a+b omega^(2)+c omega)^(3)=3abc (b) 6abc (c) 9 abc (d) 27 abc

If 1,omega,omega^(2) are the cube roots of unity,then the value of (a omega^(2)+b+c omega+d omega^(2))/(a+b omega+c omega^(2)+d) (a,b,c,d in R) is

omega is an imaginary root of unity.Prove that (a+b omega+c omega^(2))^(3)+(a+b omega^(2)+c omega)^(3)=(2a-b-c)(2b-a-c)(2c-a-b)

(a+b omega+c omega^(2))(a+b omega^(2)+c omega)