Home
Class 12
MATHS
If cos alpha + cos beta + cos gamma = 0...

If ` cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma ` then
` cos ( beta + gamma) + cos ( gamma + alpha) + cos ( alpha + beta) = 0 `
sin ` ( beta + gamma ) + sin ( gamma + alpha ) + sin ( alpha + beta ) = 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given conditions: 1. \( \cos \alpha + \cos \beta + \cos \gamma = 0 \) 2. \( \sin \alpha + \sin \beta + \sin \gamma = 0 \) We need to prove that: 1. \( \cos(\beta + \gamma) + \cos(\gamma + \alpha) + \cos(\alpha + \beta) = 0 \) 2. \( \sin(\beta + \gamma) + \sin(\gamma + \alpha) + \sin(\alpha + \beta) = 0 \) ### Step 1: Represent the angles using complex exponentials We can represent the angles using Euler's formula: \[ e^{i\alpha} = \cos \alpha + i \sin \alpha \] \[ e^{i\beta} = \cos \beta + i \sin \beta \] \[ e^{i\gamma} = \cos \gamma + i \sin \gamma \] ### Step 2: Sum the complex exponentials Now, we can write: \[ e^{i\alpha} + e^{i\beta} + e^{i\gamma} = 0 \] This means that the sum of the complex numbers corresponding to the angles is zero. ### Step 3: Use the property of complex numbers If \( e^{i\alpha} + e^{i\beta} + e^{i\gamma} = 0 \), then the vectors represented by these complex numbers form a closed triangle in the complex plane. This implies that the angles \( \alpha, \beta, \gamma \) are such that they can be represented as vectors that sum to zero. ### Step 4: Find the sum of cosines Using the identity for the cosine of sums, we can express: \[ \cos(\beta + \gamma) = \cos \beta \cos \gamma - \sin \beta \sin \gamma \] \[ \cos(\gamma + \alpha) = \cos \gamma \cos \alpha - \sin \gamma \sin \alpha \] \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Now, summing these: \[ \cos(\beta + \gamma) + \cos(\gamma + \alpha) + \cos(\alpha + \beta) \] Substituting the identities: \[ = (\cos \beta \cos \gamma - \sin \beta \sin \gamma) + (\cos \gamma \cos \alpha - \sin \gamma \sin \alpha) + (\cos \alpha \cos \beta - \sin \alpha \sin \beta) \] ### Step 5: Group terms Grouping the cosine terms and sine terms, we have: \[ = (\cos \beta \cos \gamma + \cos \gamma \cos \alpha + \cos \alpha \cos \beta) - (\sin \beta \sin \gamma + \sin \gamma \sin \alpha + \sin \alpha \sin \beta) \] ### Step 6: Use the given conditions From the conditions \( \cos \alpha + \cos \beta + \cos \gamma = 0 \) and \( \sin \alpha + \sin \beta + \sin \gamma = 0 \), we can conclude that the sums of the products of the cosines and sines will also yield zero. Thus, we have: \[ \cos(\beta + \gamma) + \cos(\gamma + \alpha) + \cos(\alpha + \beta) = 0 \] ### Step 7: Find the sum of sines Similarly, for the sine terms: \[ \sin(\beta + \gamma) = \sin \beta \cos \gamma + \cos \beta \sin \gamma \] \[ \sin(\gamma + \alpha) = \sin \gamma \cos \alpha + \cos \gamma \sin \alpha \] \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Summing these gives: \[ \sin(\beta + \gamma) + \sin(\gamma + \alpha) + \sin(\alpha + \beta) = 0 \] ### Conclusion Thus, we have shown that both conditions hold true: 1. \( \cos(\beta + \gamma) + \cos(\gamma + \alpha) + \cos(\alpha + \beta) = 0 \) 2. \( \sin(\beta + \gamma) + \sin(\gamma + \alpha) + \sin(\alpha + \beta) = 0 \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) (M.C.Q) |42 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then cos ^ (2) alpha + cos ^ (2) beta + cos ^ (2) gamma is

If cos alpha+cos beta+cos gamma=0 and also sin alpha+sin beta+sin gamma=0 then prove that

prove that | (sin alpha, sin beta, sin gamma), (cos alpha, cos beta, cos gamma), (sin 2alpha, sin 2beta, sin 2gamma) | = 4sin (1/2) (beta-gamma) * sin (1/2) (gamma-alpha) * sin (1/2) (alpha-beta) xx {sin (beta + gamma) + sin (gamma + alpha) + sin (alpha + beta)}.

lfsin alpha + sin beta + sin gamma = 0 = cos alpha + cos beta + cos gamma then sum cos (alpha-beta) =

If cos (alpha + beta) sin (gamma + delta) = cos (alpha - beta) sin (gamma - delta) then:

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma then x^(sin(2 alpha-beta-gamma)*x^(sin(2 beta-gamma-alpha)))*x ^(sin(2 gamma-alpha-beta)) is

Let A and B denote the statements A : cos alpha + cos beta + cos gamma =0 B : sin alpha + siin beta + sin gamma = 0 If cos(beta - gamma) + cos (gamma -alpha) + cos (alpha -beta) = - (3)/(2) , then