Home
Class 12
MATHS
For y = log(a) x to be defined 'a' must ...

For `y = log_(a)` x to be defined '`a`' must be

A

any `+` ive real number

B

any number

C

`ge` e

D

any `+` ive real number `ne1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (log_(e)(1+x^(2)tanx))/(sinx^(3)), x != 0 is continuous at x = 0 then f(0) must be defined as

If log x + log y = log(x + y) then y as a function of x is given by y= _________.

Assuming that all logarithmic terms are define which of the following statement(s) is/are incorrect? (A)log_b(ysqrtx)=log_b y.(1/2log_b x) , (B) log_b x-log_b y=(log_b x)/(log_b y) , (C)2(log_b x+log_b y)=log_b (x^2y^2) , (D) 4log_b x-log_b y=log(x^4/y^-3)

If log_(theta)x-log_(theta)y= a, log_(theta)y-log_(theta)z=b and log_(theta)z- log_(theta)x=c , then find the value of (x/y)^(b-c) x(y/z)^(c-a)x(z/x)^(a-b)