Home
Class 12
MATHS
log(7)log(7)sqrt(7(sqrt(7sqrt(7))))=...

`log_(7)log_(7)sqrt(7(sqrt(7sqrt(7))))=`

A

`3log_(2)7`

B

1-3log_(3)7`

C

`1-3log_(7)2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{7}\log_{7}\sqrt{7(\sqrt{7\sqrt{7}})} \), we will break it down step by step. ### Step 1: Simplify the Inner Expression First, we need to simplify the expression inside the logarithm: \[ \sqrt{7(\sqrt{7\sqrt{7}})} \] ### Step 2: Simplify \( \sqrt{7\sqrt{7}} \) We know that \( \sqrt{7\sqrt{7}} = \sqrt{7 \cdot 7^{1/2}} = \sqrt{7^{3/2}} = 7^{3/4} \). ### Step 3: Substitute Back Now substituting this back into the original expression: \[ \sqrt{7(7^{3/4})} = \sqrt{7^{1 + 3/4}} = \sqrt{7^{7/4}} = 7^{7/8} \] ### Step 4: Rewrite the Logarithm Now we can rewrite our original expression: \[ \log_{7}\log_{7}(7^{7/8}) \] ### Step 5: Apply Logarithm Power Rule Using the logarithm power rule \( \log_{a}(b^{c}) = c \cdot \log_{a}(b) \): \[ \log_{7}(7^{7/8}) = \frac{7}{8} \cdot \log_{7}(7) \] ### Step 6: Simplify Using Logarithm Identity Since \( \log_{7}(7) = 1 \): \[ \log_{7}(7^{7/8}) = \frac{7}{8} \cdot 1 = \frac{7}{8} \] ### Step 7: Final Expression Now we substitute this back into the outer logarithm: \[ \log_{7}\left(\frac{7}{8}\right) \] ### Step 8: Use Logarithm Property Using the property \( \log_{a}(b/c) = \log_{a}(b) - \log_{a}(c) \): \[ \log_{7}\left(\frac{7}{8}\right) = \log_{7}(7) - \log_{7}(8) = 1 - \log_{7}(8) \] ### Step 9: Rewrite \( 8 \) We can express \( 8 \) as \( 2^3 \): \[ \log_{7}(8) = \log_{7}(2^3) = 3 \log_{7}(2) \] ### Step 10: Final Result Thus, the final expression becomes: \[ 1 - 3 \log_{7}(2) \] ### Conclusion The final answer is: \[ \log_{7}\log_{7}\sqrt{7(\sqrt{7\sqrt{7}})} = 1 - 3 \log_{7}(2) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2 , then a+b=

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

the value of log_(7)[log_(7)sqrt(7sqrt(7sqrt(7)))] is

the value of log_(7)[log_(7)sqrt(7sqrt(7sqrt(7)))] is

the value of log_(7)[log_(7)sqrt(7sqrt(7sqrt(7)))] is

the value of log_(7)[log_(7)sqrt(7sqrt(7sqrt(7)))] is

Solve :log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0