Home
Class 12
MATHS
The value of 2^(log(3)5)-5^(log(3)2) is...

The value of `2^(log_(3)5)-5^(log_(3)2)` is

A

`0`

B

`3`

C

`5`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2^{\log_{3}5} - 5^{\log_{3}2}\), we will use the property of logarithms that states: \[ a^{\log_{b}c} = c^{\log_{b}a} \] ### Step 1: Apply the property to the first term We start with the first term \(2^{\log_{3}5}\). According to the property mentioned, we can rewrite it as: \[ 2^{\log_{3}5} = 5^{\log_{3}2} \] ### Step 2: Substitute back into the expression Now we can substitute this back into the original expression: \[ 2^{\log_{3}5} - 5^{\log_{3}2} = 5^{\log_{3}2} - 5^{\log_{3}2} \] ### Step 3: Simplify the expression Since both terms are now the same, we can simplify the expression: \[ 5^{\log_{3}2} - 5^{\log_{3}2} = 0 \] ### Final Answer Thus, the value of \(2^{\log_{3}5} - 5^{\log_{3}2}\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate: 2^(log_(3)5)-5^(log_(3)2)

The value of 3^(log_(4)5)-5^(log_(4)3) is 0(b)1(c)2(d) none of these

Simplify: 2^((log)_(3)5)-5^((log)_(3)2)

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

Let x,y and z be positive real numbers such that x^(log_(2)7)=8,y^(log_(3)5)=81 and z^(log_(5)216)=(5)^((1)/(3)) The value of (x(log_(2)7)^(2))+(y^(log_(3)5)^^2)+z^((log_(5)16)^(2)), is

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .