Home
Class 12
MATHS
If log(k)A.log(5)k=3, then A=...

If `log_(k)A.log_(5)k=3,` then A=

A

`5k^(3)`

B

k^(3)`

C

`125`

D

`243`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_k A \cdot \log_5 k = 3 \), we will follow these steps: ### Step 1: Rewrite the logarithmic expressions Using the change of base formula for logarithms, we can express \( \log_k A \) and \( \log_5 k \) as: \[ \log_k A = \frac{\log A}{\log k} \quad \text{and} \quad \log_5 k = \frac{\log k}{\log 5} \] ### Step 2: Substitute into the equation Substituting these expressions into the original equation gives: \[ \frac{\log A}{\log k} \cdot \frac{\log k}{\log 5} = 3 \] ### Step 3: Simplify the equation Notice that \( \log k \) in the numerator and denominator cancels out: \[ \frac{\log A}{\log 5} = 3 \] ### Step 4: Isolate \( \log A \) Now, we can isolate \( \log A \) by multiplying both sides by \( \log 5 \): \[ \log A = 3 \cdot \log 5 \] ### Step 5: Use the power property of logarithms We can use the property of logarithms that states \( a \cdot \log b = \log(b^a) \): \[ \log A = \log(5^3) \] ### Step 6: Remove the logarithm Since the logarithms are equal, we can set the arguments equal to each other: \[ A = 5^3 \] ### Step 7: Calculate \( A \) Calculating \( 5^3 \): \[ A = 125 \] Thus, the value of \( A \) is \( 125 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(k)xlog_(5)k=3 , then what is x equal to?

If log_(k)xlog_(5)k=3 , then find the value of x.

if log_(k)x*log_(5)k=log_(x)5 then xis equal to

if log_(k)x*log_(5)k=log_(x)5 then xis equal to

if log_(k)x.log_(5)k=log_(x)5,k!=1,k>0, then find the value of x

if log_(16)25 = k log_(2)5 then k = _____

If log_(k)x*log_(5)k=log_(x)5,k!=1,k>0, then x is equal to k(b)1/5(c)5(d) none of these

If log_(y)x=(a.log_(z)y)=(b.log_(x)z)=ab , then which of the following pairs of values for (a,b) is not possible?

If log_(e)2*log_(k)(1728)=log_(5)8.log_(e)5 then k=