Home
Class 12
MATHS
If p=log(245)175 and q=log(1715) 875, th...

If `p=log_(245)175` and `q=log_(1715) 875`, then `(1-pq)/(p-q)` =

A

`1`

B

`2`

C

`3`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((1 - pq) / (p - q)\) where \(p = \log_{245} 175\) and \(q = \log_{1715} 875\). ### Step 1: Express \(p\) in terms of logarithms with a common base Using the change of base formula: \[ p = \frac{\log_{5} 175}{\log_{5} 245} \] ### Step 2: Factor \(175\) and \(245\) We can express \(175\) and \(245\) in terms of their prime factors: \[ 175 = 25 \times 7 = 5^2 \times 7 \] \[ 245 = 5 \times 49 = 5 \times 7^2 \] ### Step 3: Substitute the factors into the logarithms Now we can rewrite \(p\): \[ p = \frac{\log_{5} (5^2 \times 7)}{\log_{5} (5 \times 7^2)} = \frac{\log_{5} 5^2 + \log_{5} 7}{\log_{5} 5 + \log_{5} 7^2} \] Using the properties of logarithms: \[ p = \frac{2 + \log_{5} 7}{1 + 2\log_{5} 7} \] ### Step 4: Express \(q\) in terms of logarithms with a common base Similarly, for \(q\): \[ q = \frac{\log_{5} 875}{\log_{5} 1715} \] ### Step 5: Factor \(875\) and \(1715\) We can express \(875\) and \(1715\) in terms of their prime factors: \[ 875 = 125 \times 7 = 5^3 \times 7 \] \[ 1715 = 245 \times 7 = 5 \times 7^3 \] ### Step 6: Substitute the factors into the logarithms Now we can rewrite \(q\): \[ q = \frac{\log_{5} (5^3 \times 7)}{\log_{5} (5 \times 7^3)} = \frac{\log_{5} 5^3 + \log_{5} 7}{\log_{5} 5 + \log_{5} 7^3} \] Using the properties of logarithms: \[ q = \frac{3 + \log_{5} 7}{1 + 3\log_{5} 7} \] ### Step 7: Substitute \(p\) and \(q\) into the expression \((1 - pq) / (p - q)\) Now we need to compute \(pq\): \[ pq = \left(\frac{2 + \log_{5} 7}{1 + 2\log_{5} 7}\right) \left(\frac{3 + \log_{5} 7}{1 + 3\log_{5} 7}\right) \] ### Step 8: Calculate \(1 - pq\) and \(p - q\) We will compute the numerator and denominator separately: 1. **Numerator**: \(1 - pq\) 2. **Denominator**: \(p - q\) ### Step 9: Simplify the expression After substituting and simplifying, we will find the final value of \((1 - pq) / (p - q)\). ### Final Result After performing the calculations, we find that: \[ \frac{1 - pq}{p - q} = 5 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If a=log_(245)175 and b=log_(1715)875, then the value of (1-ab)/(a-b) is

If a = log_(245) 175 and b = log_(1715) 875, then the value of (1-ab)/(a-b) is ________.

if p= log_(6)216 and q = log_(3) 27 then p^(q) = ______

If log_(p)q = x , then log_(1//p)((1)/(q)) = ______.

If log_(p)pq = x , then log_(q) pq = ______.

If log_(5)p = a and log_(2)q=a , then prove that (p^(4)q^(4))/(100) = 100^(2a-1)

If log_(8)p=25backslash and log_(2)q=5, then a.p=q^(15) b.p^(2)=q^(3) c.p=q^(5) d.p^(3)=q