Home
Class 12
MATHS
The value of log(3)2log(4)3log(5)4.....l...

The value of `log_(3)2log_(4)3log_(5)4.....log_(15)14log_(16)15` is

A

`(1)/(2)`

B

`(1)/(3)`

C

`(1)/(4)`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{3}2 \cdot \log_{4}3 \cdot \log_{5}4 \cdots \log_{15}14 \cdot \log_{16}15 \), we can use the change of base formula for logarithms. The change of base formula states that: \[ \log_{b}a = \frac{\log_{e}a}{\log_{e}b} \] Using this property, we can rewrite each logarithm in the product: 1. **Rewrite each logarithm:** \[ \log_{3}2 = \frac{\log_{e}2}{\log_{e}3} \] \[ \log_{4}3 = \frac{\log_{e}3}{\log_{e}4} \] \[ \log_{5}4 = \frac{\log_{e}4}{\log_{e}5} \] \[ \cdots \] \[ \log_{16}15 = \frac{\log_{e}15}{\log_{e}16} \] 2. **Combine the logarithms:** The product becomes: \[ \log_{3}2 \cdot \log_{4}3 \cdot \log_{5}4 \cdots \log_{16}15 = \frac{\log_{e}2}{\log_{e}3} \cdot \frac{\log_{e}3}{\log_{e}4} \cdot \frac{\log_{e}4}{\log_{e}5} \cdots \frac{\log_{e}15}{\log_{e}16} \] 3. **Cancel terms:** Notice that in the product, all intermediate terms will cancel out: \[ = \frac{\log_{e}2}{\log_{e}16} \] 4. **Simplify \(\log_{e}16\):** Since \(16 = 2^4\), we can express \(\log_{e}16\) as: \[ \log_{e}16 = \log_{e}(2^4) = 4 \cdot \log_{e}2 \] 5. **Final expression:** Substitute back into the equation: \[ = \frac{\log_{e}2}{4 \cdot \log_{e}2} = \frac{1}{4} \] Thus, the value of the original expression \( \log_{3}2 \cdot \log_{4}3 \cdot \log_{5}4 \cdots \log_{16}15 \) is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

The value of log_(3)4log_(4)5log_(5)6...log_(8)9=

What is the value of log_(3)2,log_(4)3.log_(5)4. . .log_(16)15 ?

the value of log_(3)11log_(11)13log_(13)15log_(15)27log_(27)81

The value of (log_(3)8)/(log_(9)16log_(4)10)

Find the value of (log_(3)4)(log_(4)5)(log_(5)6)(log_(6)7)(log_(7)8)(log_(8)9)

Evaluate log_(3)4.log_(4)5.log_(5)6.log_(6)7.log_(7)8.log_(8)9

The value of log_(3)[log_(2){log_(4)(log_(5)625^(4))}] is ______.

Find the value of S=log_(2)4+log_(8)2+2^(log_(2)3)+3^(log_(5)4)-4^(log_(5)3)