Home
Class 12
MATHS
The value of log(b)a.log(c)b.log(a)c is...

The value of `log_(b)a.log_(c)b.log_(a)c` is

A

`0`

B

log abc

C

`1`

D

`10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_b a \cdot \log_c b \cdot \log_a c \), we can use the change of base formula for logarithms. The change of base formula states that: \[ \log_a b = \frac{\log_k b}{\log_k a} \] for any positive base \( k \). ### Step-by-step Solution: 1. **Apply the Change of Base Formula**: We can rewrite each logarithm using the change of base formula. Let's choose base \( e \) (natural logarithm) for simplicity. \[ \log_b a = \frac{\log_e a}{\log_e b}, \quad \log_c b = \frac{\log_e b}{\log_e c}, \quad \log_a c = \frac{\log_e c}{\log_e a} \] 2. **Substitute Back into the Expression**: Substitute these expressions back into the original expression: \[ N = \log_b a \cdot \log_c b \cdot \log_a c = \left(\frac{\log_e a}{\log_e b}\right) \cdot \left(\frac{\log_e b}{\log_e c}\right) \cdot \left(\frac{\log_e c}{\log_e a}\right) \] 3. **Simplify the Expression**: Now, we can simplify the expression by canceling out the terms: \[ N = \frac{\log_e a}{\log_e b} \cdot \frac{\log_e b}{\log_e c} \cdot \frac{\log_e c}{\log_e a} \] Notice that \( \log_e b \) in the numerator of the first term cancels with \( \log_e b \) in the denominator of the second term, and similarly for \( \log_e c \) and \( \log_e a \): \[ N = \frac{\log_e a}{\log_e a} \cdot \frac{\log_e b}{\log_e b} \cdot \frac{\log_e c}{\log_e c} = 1 \] 4. **Final Result**: Therefore, the value of \( \log_b a \cdot \log_c b \cdot \log_a c \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

10 Find the value of log_(b)a.log_(c)b*log_(a)c

The value of log(log_(b)a.log_(c)b*log_(d)c.log_(a)d)is

If a,b,c,d in R^(+)-{1} , then the minimum value of log_(d) a+ log_(c)b+log _(a)c+log_(b)d is

Find the value of log_(b)^(x)*log_(c)^(b)*log_(d)^(c)dots...log_(n)^(m)*log_(a)^(n)

If agt1,bgt1,cgt1,dgt1 then the minimum value of log_(b)a+log_(a)b+log_(d)c+log_(c)d , is

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

Let ABC be a triangle right at C. The value (log_(b+c)a+log_(c-b)a)/(log_(b+c)a*log_(c-b)a)(b+c!=1,c-b!=1) equals

If a,b,c,d in R^(+-){1}, then the minimum value of (log)_(d)a+(log)_(b)d+(log)_(a)c+(log)_(c)b is (a)4(b)2(c)1( d) none of these

The value of (log_(a)(log_(b)a))/(log_(b)(log_(a)b)) is