Home
Class 12
MATHS
The value of (0*16)^(log(2*5)((1)/(3)+(1...

The value of `(0*16)^(log_(2*5)((1)/(3)+(1)/(3^(2))+(1)/(3^(3))+....oo))` is

A

`4`

B

`3`

C

`2`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (0.16)^{\log_{2.5}\left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \ldots\right)} \), we will follow these steps: ### Step 1: Calculate the sum of the infinite series The series given is: \[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \ldots \] This is a geometric series where the first term \( a = \frac{1}{3} \) and the common ratio \( r = \frac{1}{3} \). The sum \( S \) of an infinite geometric series can be calculated using the formula: \[ S = \frac{a}{1 - r} \] Substituting the values: \[ S = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2} \] ### Step 2: Substitute the sum into the logarithm Now we substitute the sum back into the logarithm: \[ (0.16)^{\log_{2.5}\left(\frac{1}{2}\right)} \] ### Step 3: Rewrite \( 0.16 \) Next, we can express \( 0.16 \) in terms of powers of \( 2 \): \[ 0.16 = \frac{16}{100} = \frac{16}{10^2} = \frac{2^4}{(2 \cdot 5)^2} = \frac{2^4}{2^2 \cdot 5^2} = \frac{2^2}{5^2} = \frac{4}{25} \] ### Step 4: Rewrite the expression Now we can rewrite our expression: \[ \left(\frac{4}{25}\right)^{\log_{2.5}\left(\frac{1}{2}\right)} \] ### Step 5: Use the properties of logarithms Using the property of logarithms \( a^{\log_b(c)} = c^{\log_b(a)} \), we can rewrite the expression: \[ \left(\frac{4}{25}\right)^{\log_{2.5}\left(\frac{1}{2}\right)} = \left(\frac{1}{2}\right)^{\log_{2.5}\left(\frac{4}{25}\right)} \] ### Step 6: Calculate \( \log_{2.5}\left(\frac{4}{25}\right) \) We can express \( \frac{4}{25} \) as: \[ \frac{4}{25} = \frac{2^2}{5^2} \] Thus, \[ \log_{2.5}\left(\frac{4}{25}\right) = \log_{2.5}(2^2) - \log_{2.5}(5^2) = 2\log_{2.5}(2) - 2\log_{2.5}(5) \] ### Step 7: Substitute back and simplify Now substituting back: \[ \left(\frac{1}{2}\right)^{2\log_{2.5}(2) - 2\log_{2.5}(5)} = \left(\frac{1}{2}\right)^{2(\log_{2.5}(2) - \log_{2.5}(5))} \] This can be simplified further, but we can see that the expression will evaluate to a numerical value. ### Final Result The final value of the expression is: \[ \left(\frac{1}{2}\right)^{0} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Value of (0.36)^(log_(0.25))((1)/(3)+(1)/(3^(2))+(1)/(3^(3))+....oo)=

The value of (0.16)^("log"_(0.25)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is

(0.4)^(-log2.5{(1)/(3)+(1)/(32)+(1)/(3^(3))+...)}

the value of [(0.16)^(log_(0.25)((1)/(3)+(1)/(32)+(1)/(3^(3))+...............+oo)]^((1)/(2))) is

Value of y=(0.64)^((log_(2055))((1)/(3)+(1)/(3^(2))+(1)/(33)+...up rarr oo))

If the value of (1+(2)/(3)+(6)/(3^(2))+(10)/(3^(3))+...."upto "oo)^(log_((0.25))((1)/(3)+(1)/(3^(2))+(1)/(3^(3))+....."upto "oo) is l , then l^(2) is equal to _______.

The value of [(0.16)^(log_(2.5)(1/3+1/3^2+1/3^3+….+oo))]^(1/2) is

The value of the sum (1)/(3^(2)+1)+(1)/(4^(2)+2)+(1)/(5^(2)+3)+...oo is equal

The sum of (1)/(2)+(1)/(3)*((1)/(2^(3)))+(1)/(5)*((1)/(2^(5)))+....oo is