Home
Class 12
MATHS
7log((16)/(15))+5log((25)/(24))+3log((81...

`7log((16)/(15))+5log((25)/(24))+3log((81)/(80))` is equal to

A

`0`

B

`1`

C

`log 2`

D

`log 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 7\log\left(\frac{16}{15}\right) + 5\log\left(\frac{25}{24}\right) + 3\log\left(\frac{81}{80}\right) \), we will use the properties of logarithms. ### Step 1: Apply the power rule of logarithms Using the property \( m\log(a) = \log(a^m) \), we can rewrite the expression: \[ 7\log\left(\frac{16}{15}\right) = \log\left(\left(\frac{16}{15}\right)^7\right) \] \[ 5\log\left(\frac{25}{24}\right) = \log\left(\left(\frac{25}{24}\right)^5\right) \] \[ 3\log\left(\frac{81}{80}\right) = \log\left(\left(\frac{81}{80}\right)^3\right) \] So, the expression becomes: \[ \log\left(\left(\frac{16}{15}\right)^7\right) + \log\left(\left(\frac{25}{24}\right)^5\right) + \log\left(\left(\frac{81}{80}\right)^3\right) \] ### Step 2: Use the property of logarithms to combine Using the property \( \log(a) + \log(b) = \log(ab) \), we can combine the logarithms: \[ \log\left(\left(\frac{16}{15}\right)^7 \cdot \left(\frac{25}{24}\right)^5 \cdot \left(\frac{81}{80}\right)^3\right) \] ### Step 3: Calculate the expression inside the logarithm Now we need to simplify the expression inside the logarithm: \[ \left(\frac{16}{15}\right)^7 = \frac{16^7}{15^7} \] \[ \left(\frac{25}{24}\right)^5 = \frac{25^5}{24^5} \] \[ \left(\frac{81}{80}\right)^3 = \frac{81^3}{80^3} \] Combining these, we have: \[ \log\left(\frac{16^7 \cdot 25^5 \cdot 81^3}{15^7 \cdot 24^5 \cdot 80^3}\right) \] ### Step 4: Substitute the powers Now we can substitute the values: - \( 16 = 2^4 \) so \( 16^7 = (2^4)^7 = 2^{28} \) - \( 25 = 5^2 \) so \( 25^5 = (5^2)^5 = 5^{10} \) - \( 81 = 3^4 \) so \( 81^3 = (3^4)^3 = 3^{12} \) Thus, the numerator becomes: \[ 2^{28} \cdot 5^{10} \cdot 3^{12} \] For the denominator: - \( 15 = 3 \cdot 5 \) so \( 15^7 = (3 \cdot 5)^7 = 3^7 \cdot 5^7 \) - \( 24 = 2^3 \cdot 3 \) so \( 24^5 = (2^3 \cdot 3)^5 = 2^{15} \cdot 3^5 \) - \( 80 = 2^4 \cdot 5 \) so \( 80^3 = (2^4 \cdot 5)^3 = 2^{12} \cdot 5^3 \) Thus, the denominator becomes: \[ 3^7 \cdot 5^7 \cdot 2^{15} \cdot 3^5 \cdot 2^{12} \cdot 5^3 = 2^{27} \cdot 3^{12} \cdot 5^{10} \] ### Step 5: Combine and simplify Now we can combine the numerator and denominator: \[ \log\left(\frac{2^{28} \cdot 5^{10} \cdot 3^{12}}{2^{27} \cdot 3^{12} \cdot 5^{10}}\right) = \log\left(\frac{2^{28}}{2^{27}}\right) = \log(2) = 1 \] ### Final Result Thus, the final result is: \[ \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

7log((10)/(9))-2log((25)/(24))+3log((81)/(80))

show that 7log((16)/(15))+5log((25)/(24))+3log((81)/(80))=log2

7log((10)/(9))-2log((25)/(24))+3log((81)/(80))=log2

log((9)/(14))+log((35)/(24))-log((15)/(16))=0

prove that log2+16log((16)/(15))+12log((25)/(24))+7log((81)/(80))=1

The value of 7log((16)/(15))+5log((25)/(24))+3log((81)/(80))=

If 7"log"_(a)(16)/(15)+5"log"_(a)(25)/(24)+3"log"_(a)(81)/(80)=8 , then a=