Home
Class 12
MATHS
If n=1983!, then the value of expression...

If `n=1983!`, then the value of expression `(1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n.)+......+(1)/(log_(1983)n)` is equal to

A

`-1`

B

`0`

C

`1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \ldots + \frac{1}{\log_{1983} n} \] where \( n = 1983! \), we can use the change of base formula for logarithms. The change of base formula states that \[ \log_b a = \frac{\log_k a}{\log_k b} \] for any positive \( k \). We will use base 10 for simplicity. ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can rewrite each term in the expression: \[ \log_k n = \frac{\log n}{\log k} \] Thus, we have: \[ \frac{1}{\log_k n} = \frac{\log k}{\log n} \] ### Step 2: Substitute into the expression Now substituting this back into our original expression gives us: \[ \frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \ldots + \frac{1}{\log_{1983} n} = \frac{\log 2}{\log n} + \frac{\log 3}{\log n} + \ldots + \frac{\log 1983}{\log n} \] ### Step 3: Factor out \(\frac{1}{\log n}\) We can factor out \(\frac{1}{\log n}\): \[ = \frac{1}{\log n} \left( \log 2 + \log 3 + \log 4 + \ldots + \log 1983 \right) \] ### Step 4: Use the property of logarithms Using the property of logarithms that states \(\log a + \log b = \log(ab)\), we can combine the logs: \[ \log 2 + \log 3 + \log 4 + \ldots + \log 1983 = \log(2 \times 3 \times 4 \times \ldots \times 1983) \] This product is equal to \(\log(1983!)\). ### Step 5: Substitute back into the expression Now substituting this back into our expression gives us: \[ = \frac{\log(1983!)}{\log n} \] Since \( n = 1983! \), we have: \[ = \frac{\log(1983!)}{\log(1983!)} = 1 \] ### Final Answer Thus, the value of the expression \[ \frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \ldots + \frac{1}{\log_{1983} n} = 1. \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

In n = 10!, then what is the value of the following? (1)/(log_(2)n) +(1)/(log_(3)n) +(1)/(log_(4)n)+…..+ (1)/(log_(10)n)

What is (1)/(log_(2)N)+(1)/(log_(3)N)+(1)/(log_(4)N)+....+(1)/(log_(100)N) " equal to "(Nne1) ?

What is the value of (1)/(log_(2)n)+(1)/(log_(3)n)+ . . .+(1)/(log_(40)n) ?

The value of (1)/(log_(3)n)+(1)/(log_(4)n) + (1)/(log_(5)n) + ... + (1)/(log_(8)n) is ______.

If n=|__2002, evaluate (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+......+(1)/(log_(2002)n)