Home
Class 12
MATHS
(1)/(log(xy)xyz)+(1)/(log(yz)xyz)+(1)/(l...

`(1)/(log_(xy)xyz)+(1)/(log_(yz)xyz)+(1)/(log_(zx)xyz)` =

A

`0`

B

`1`

C

`2`

D

`log_(x)xyz`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\log_{xy} xyz} + \frac{1}{\log_{yz} xyz} + \frac{1}{\log_{zx} xyz} \] we can use the change of base formula for logarithms, which states that \[ \log_{a} b = \frac{\log b}{\log a}. \] ### Step 1: Apply the Change of Base Formula Using the change of base formula, we can rewrite each term in the expression: \[ \frac{1}{\log_{xy} xyz} = \frac{\log xy}{\log xyz}, \quad \frac{1}{\log_{yz} xyz} = \frac{\log yz}{\log xyz}, \quad \frac{1}{\log_{zx} xyz} = \frac{\log zx}{\log xyz}. \] Thus, we can rewrite the entire expression as: \[ \frac{\log xy}{\log xyz} + \frac{\log yz}{\log xyz} + \frac{\log zx}{\log xyz}. \] ### Step 2: Combine the Terms Now, we can combine these fractions since they all have the same denominator: \[ \frac{\log xy + \log yz + \log zx}{\log xyz}. \] ### Step 3: Use the Logarithm Property Using the property of logarithms that states \(\log a + \log b = \log(ab)\), we can combine the numerator: \[ \log xy + \log yz + \log zx = \log(xy \cdot yz \cdot zx). \] ### Step 4: Simplify the Product Now, let's simplify the product \(xy \cdot yz \cdot zx\): \[ xy \cdot yz \cdot zx = x^2y^2z^2. \] Thus, we have: \[ \log(xy \cdot yz \cdot zx) = \log(x^2y^2z^2) = 2\log(xyz). \] ### Step 5: Substitute Back into the Expression Now substituting back into our expression gives: \[ \frac{2 \log(xyz)}{\log xyz}. \] ### Step 6: Simplify the Expression Since \(\frac{\log(xyz)}{\log(xyz)} = 1\), we have: \[ 2 \cdot 1 = 2. \] ### Final Answer Thus, the value of the original expression is \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

(1)/(log_(x)xy)+(1)/(log_(y)xy)

1/(log_(xy)x + log_(xy)y = _______ ?

Solve the system of equations : log_(a)(x)log_(a)(xyz)=48log_(a)(y)log_(a)(xyz)=12log_(a)(z)log_(a)(xyz)=84,quad a>0,a!=1

Positive numbers x,y backslash and backslash z satisfy xyz:)=(:10^(1) and (log_(10)x)*(log_(10)yz)+(log_(10)y)*(log_(10)z)=468. Find the value of (log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)

Positive numbers x,y and z satisfy xyz=10^(81) and (log_(10)x)(log_(10)yz)+(log_(10)y)(log_(10)z)=468. Find the value of (log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)

det[[log_(x)xyz,log_(x)y,log_(x)zlog_(y)xyz,1,log_(y)zlog_(z)xyz,log_(z)y,1]]=0

Solve the system of equations: (log)_(a)x(log)_(a)(xyz)=48(log)_(a)y log_(a)(xyz)=12,backslash a>0,backslash a!=1(log)_(a)z log_(a)(xyz)=84

If (log_(e)x)/(y-z)=(log_(e)y)/(z-x)=(log_(e)z)/(x-y), prove that xyz=1

If the positive numbers x,y&z satisfy xyz=1000,log_(10)x log_(10)y+log_(10)xy log_(10)z=1 and log_(x)10+log_(y)10+log_(z)10=(1)/(3) then the value of root(3)((log_(10)x)^(3)+(log_(10)y)^(3)+(log_(10)z)^(3)) is