Home
Class 12
MATHS
If x^(18)=y^(21)=z^(28) then 3,3log(y)x,...

If `x^(18)=y^(21)=z^(28)` then `3,3log_(y)x,3log_(z)y,7log_(x)z` are in

A

A.P.

B

G.P.

C

H.P.

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( x^{18} = y^{21} = z^{28} = k \) (where \( k \) is a constant) From this, we can express \( x \), \( y \), and \( z \) in terms of \( k \): \[ x = k^{\frac{1}{18}}, \quad y = k^{\frac{1}{21}}, \quad z = k^{\frac{1}{28}} \] Next, we need to find the logarithms: ### Step 1: Calculate \( \log_y x \) Using the change of base formula, we have: \[ \log_y x = \frac{\log x}{\log y} \] Substituting the expressions for \( x \) and \( y \): \[ \log_y x = \frac{\log(k^{\frac{1}{18}})}{\log(k^{\frac{1}{21}})} = \frac{\frac{1}{18} \log k}{\frac{1}{21} \log k} = \frac{21}{18} = \frac{7}{6} \] ### Step 2: Calculate \( \log_z y \) Similarly, we find: \[ \log_z y = \frac{\log y}{\log z} \] Substituting the expressions for \( y \) and \( z \): \[ \log_z y = \frac{\log(k^{\frac{1}{21}})}{\log(k^{\frac{1}{28}})} = \frac{\frac{1}{21} \log k}{\frac{1}{28} \log k} = \frac{28}{21} = \frac{4}{3} \] ### Step 3: Calculate \( \log_x z \) Now we calculate: \[ \log_x z = \frac{\log z}{\log x} \] Substituting the expressions for \( z \) and \( x \): \[ \log_x z = \frac{\log(k^{\frac{1}{28}})}{\log(k^{\frac{1}{18}})} = \frac{\frac{1}{28} \log k}{\frac{1}{18} \log k} = \frac{18}{28} = \frac{9}{14} \] ### Step 4: Formulate the expressions Now we can express the values we need to check: 1. \( 3 \) 2. \( 3 \log_y x = 3 \cdot \frac{7}{6} = \frac{21}{6} = \frac{7}{2} \) 3. \( 3 \log_z y = 3 \cdot \frac{4}{3} = 4 \) 4. \( 7 \log_x z = 7 \cdot \frac{9}{14} = \frac{63}{14} = \frac{9}{2} \) ### Step 5: Check if they are in Arithmetic Progression (AP) To check if the four numbers \( 3, \frac{7}{2}, 4, \frac{9}{2} \) are in AP, we can check if: \[ 2 \cdot \frac{7}{2} = 3 + 4 \] Calculating: \[ 2 \cdot \frac{7}{2} = 7 \quad \text{and} \quad 3 + 4 = 7 \] Next, we check: \[ 2 \cdot 4 = \frac{7}{2} + \frac{9}{2} \] Calculating: \[ 2 \cdot 4 = 8 \quad \text{and} \quad \frac{7}{2} + \frac{9}{2} = \frac{16}{2} = 8 \] Both conditions are satisfied, hence: ### Conclusion The numbers \( 3, 3 \log_y x, 3 \log_z y, 7 \log_x z \) are in Arithmetic Progression.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If x^(18)=y^(21)=z^(28) , then 3,3 log_(y)x,3log_(z)y,7log_(x)z are in

If x,y, and z are positive real numbers different from 1 and x^18=y^21=z^28 show that 3,3 log_y x, 3log_zy, 7log_xz are in A.P.

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

if x^(2) + y^(2) =z^(2) , "then" 1/(log_(z+x)y) + 1/(log_(z-x)y) = _______

if x^(2) + y^(2) = z^(2) then prove that log_(y)(z+x) + log_(y) (z-x)=2

log_(x)x xx log_(y)y xx log_(z)z = ______

. If 1,log_(y)x,log_(z)y,-15log_(x)z are in AP,then (b) x=y-1 (d) All of these (a)2=x(c)2-3=y