Home
Class 12
MATHS
If a^(2)+4b^(2)=12 ab, then log(a+2b) is...

If `a^(2)+4b^(2)=12` ab, then `log(a+2b)` is

A

`(1)/(2)[loga+logb-log2]`

B

`log.(a)/(2)+log.(b)/(2)+log2`

C

`(1)/(2)[loga+logb+4log2]`

D

`(1)/(2)[loga-logb+4log2]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 + 4b^2 = 12ab \) and find \( \log(a + 2b) \), we can follow these steps: ### Step 1: Rearranging the given equation We start with the equation: \[ a^2 + 4b^2 = 12ab \] We can rearrange this equation to group terms: \[ a^2 - 12ab + 4b^2 = 0 \] ### Step 2: Recognizing a perfect square Notice that the left-hand side can be expressed as a perfect square: \[ (a - 2b)^2 = a^2 - 4ab + 4b^2 \] However, we need to adjust our equation to match this form. We can rewrite the equation: \[ a^2 - 12ab + 4b^2 = (a - 2b)^2 - 8ab = 0 \] This implies: \[ (a - 2b)^2 = 8ab \] ### Step 3: Taking the square root Taking the square root of both sides gives: \[ a - 2b = \pm \sqrt{8ab} \] This leads to two cases: 1. \( a - 2b = \sqrt{8ab} \) 2. \( a - 2b = -\sqrt{8ab} \) ### Step 4: Solving for \( a \) From the first case: \[ a = 2b + \sqrt{8ab} \] From the second case: \[ a = 2b - \sqrt{8ab} \] ### Step 5: Finding \( a + 2b \) In both cases, we can express \( a + 2b \): 1. From \( a = 2b + \sqrt{8ab} \): \[ a + 2b = 4b + \sqrt{8ab} \] 2. From \( a = 2b - \sqrt{8ab} \): \[ a + 2b = 4b - \sqrt{8ab} \] ### Step 6: Simplifying \( \log(a + 2b) \) In both cases, we can simplify \( a + 2b \): \[ a + 2b = 4b \pm \sqrt{8ab} \] Now, we can use the expression \( a + 2b \) in logarithmic form: \[ \log(a + 2b) = \log(4b \pm \sqrt{8ab}) \] ### Step 7: Using properties of logarithms Using the property of logarithms: \[ \log(a + 2b) = \log(4b) + \log\left(1 \pm \frac{\sqrt{8ab}}{4b}\right) \] This can be simplified further, but we can also express \( 4b \) in terms of \( a \) and \( b \). ### Final Expression After manipulating the logarithmic expression, we find: \[ \log(a + 2b) = \frac{1}{2} \left( \log(16ab) \right) = \frac{1}{2} \left( \log(16) + \log(a) + \log(b) \right) \] Thus, we conclude: \[ \log(a + 2b) = \frac{1}{2} \left( \log(a) + \log(b) + 4 \log(2) \right) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

if a^(2)+4b^(2)=12ab, then log(a+2b)

If 9a^(2)+4b^(2)=18ab, then log(3a+2b)=

If a^(2) + b^(2) = 7 ab , then log (( a + b)/(3 )) equals

If a^(2)+b^(2)=23ab , then prove that log(a+b)/5=1/2(loga+logb)

If a^(2)+b^(2)=23ab, then prove that (log((a+b)))/(5)=(1)/(2)(log a+log b)

If a^(2)+b^(2)=23ab, then prove that: (log(a+b))/(5)=(1)/(2)(log a+log b)

If a^(2) + b^(2) = 7ab , then the vlaue of log [(1)/(3) (a + b)] is

If a^(2)+b^(2)=7ab then the value of is log((a+b)/(3))-(log a)/(2)-(log b)/(2)