Home
Class 12
MATHS
If log(10)2=0*30103, then log(10)50 =...

If `log_(10)2=0*30103`, then `log_(10)50` =

A

`2.30103`

B

`2.69897`

C

`1.69897`

D

`0.69897`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \log_{10} 50 \) using the given information that \( \log_{10} 2 = 0.30103 \). ### Step-by-Step Solution: 1. **Express 50 in terms of its prime factors**: \[ 50 = 5 \times 10 = 5 \times (2 \times 5) = 5^2 \times 2 \] 2. **Use the logarithmic property**: We can express \( \log_{10} 50 \) using the properties of logarithms: \[ \log_{10} 50 = \log_{10} (5^2 \times 2) \] 3. **Apply the logarithmic properties**: Using the property \( \log (a \times b) = \log a + \log b \) and \( \log (a^b) = b \log a \): \[ \log_{10} 50 = \log_{10} (5^2) + \log_{10} 2 = 2 \log_{10} 5 + \log_{10} 2 \] 4. **Find \( \log_{10} 5 \)**: We know that: \[ \log_{10} 10 = 1 \] and since \( 10 = 2 \times 5 \), we can write: \[ \log_{10} 10 = \log_{10} 2 + \log_{10} 5 \] Therefore: \[ 1 = \log_{10} 2 + \log_{10} 5 \] Rearranging gives: \[ \log_{10} 5 = 1 - \log_{10} 2 \] 5. **Substituting the value of \( \log_{10} 2 \)**: Substitute \( \log_{10} 2 = 0.30103 \): \[ \log_{10} 5 = 1 - 0.30103 = 0.69897 \] 6. **Substituting back into the equation for \( \log_{10} 50 \)**: Now substitute \( \log_{10} 5 \) back into the equation: \[ \log_{10} 50 = 2 \log_{10} 5 + \log_{10} 2 \] \[ \log_{10} 50 = 2(0.69897) + 0.30103 \] 7. **Calculate the final value**: \[ \log_{10} 50 = 1.39794 + 0.30103 = 1.69897 \] ### Final Answer: \[ \log_{10} 50 = 1.69897 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(10)2= 0.3010 , then log_(10)5 = _______

If log_(10)2 = 0.3010 , then log_(10) 2000 =

If log_(10) 2=0.3010 then log_2 10=

If log_(10) 2 = 0.030103, log_(10) 50 =