Home
Class 12
MATHS
If log(10)2=0*30103, log(10)3=0*47712 , ...

If `log_(10)2=0*30103, log_(10)3=0*47712` , the number of digits in `3^(12)xx2^(8)` is

A

`7`

B

`8`

C

`9`

D

`10`

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of digits in the number \( N = 3^{12} \times 2^{8} \), we can use the logarithmic properties. The number of digits \( d \) in a number \( N \) can be found using the formula: \[ d = \lfloor \log_{10} N \rfloor + 1 \] ### Step-by-step Solution: 1. **Express \( N \) in terms of logarithms**: \[ N = 3^{12} \times 2^{8} \] Taking the logarithm (base 10) of both sides: \[ \log_{10} N = \log_{10} (3^{12} \times 2^{8}) \] 2. **Apply the logarithmic property**: Using the property \( \log_{10} (a \times b) = \log_{10} a + \log_{10} b \) and \( \log_{10} (a^b) = b \cdot \log_{10} a \): \[ \log_{10} N = \log_{10} (3^{12}) + \log_{10} (2^{8}) = 12 \cdot \log_{10} 3 + 8 \cdot \log_{10} 2 \] 3. **Substitute the given values**: We know that \( \log_{10} 2 = 0.30103 \) and \( \log_{10} 3 = 0.47712 \): \[ \log_{10} N = 12 \cdot 0.47712 + 8 \cdot 0.30103 \] 4. **Calculate each term**: - Calculate \( 12 \cdot 0.47712 \): \[ 12 \cdot 0.47712 = 5.72544 \] - Calculate \( 8 \cdot 0.30103 \): \[ 8 \cdot 0.30103 = 2.40824 \] 5. **Add the results**: \[ \log_{10} N = 5.72544 + 2.40824 = 8.13368 \] 6. **Find the number of digits**: Now, using the formula for the number of digits: \[ d = \lfloor \log_{10} N \rfloor + 1 \] The integer part \( \lfloor 8.13368 \rfloor = 8 \), so: \[ d = 8 + 1 = 9 \] ### Conclusion: The number of digits in \( 3^{12} \times 2^{8} \) is **9**.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(10)2=0.30103,log_(10)3=0.47712, the number of digits in 3^(12)*2^(6)

If (log)_(10)2=0.30103,(log_(10)3=0.47712 then find the number of digits in 3^(12)*2^(8)

* if log_(10)3=0.4771 then the number of digits in 3^(40) is =

If log_(10)2= 0.3010 , then the number of digits in 16^(12) is

If log_(10)2=0.3010,log_(10)3=0.4771. Find the number of integers in : (a) 5^(200)(b)6^(15)E the number of zeros after the decimal in 3^(-100)

If log2=0.301 and log3=0.477, find the number of digits in: (3^(15)xx2^(10))