Home
Class 12
MATHS
log{log(ab)a+(1)/(log(b)ab)} =...

`log{log_(ab)a+(1)/(log_(b)ab)}` =

A

`0`

B

`1`

C

log ab

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log\left(\log_{ab} a + \frac{1}{\log_{b} ab}\right) \), we will follow these steps: ### Step 1: Rewrite the logarithmic terms We start with the expression: \[ \log_{ab} a + \frac{1}{\log_{b} ab} \] Using the change of base formula, we can rewrite \( \log_{ab} a \) as: \[ \log_{ab} a = \frac{\log a}{\log(ab)} = \frac{\log a}{\log a + \log b} \] ### Step 2: Rewrite the second term Next, we rewrite \( \log_{b} ab \): \[ \log_{b} ab = \frac{\log(ab)}{\log b} = \frac{\log a + \log b}{\log b} \] Thus, we can find \( \frac{1}{\log_{b} ab} \): \[ \frac{1}{\log_{b} ab} = \frac{\log b}{\log a + \log b} \] ### Step 3: Combine the two terms Now we can combine both terms: \[ \log_{ab} a + \frac{1}{\log_{b} ab} = \frac{\log a}{\log a + \log b} + \frac{\log b}{\log a + \log b} \] Since both fractions have the same denominator, we can add them: \[ = \frac{\log a + \log b}{\log a + \log b} = 1 \] ### Step 4: Take the logarithm of the result Now we take the logarithm of the result: \[ \log(1) \] Since the logarithm of 1 is 0 for any base, we have: \[ \log(1) = 0 \] ### Final Answer Thus, the final answer is: \[ \log\left(\log_{ab} a + \frac{1}{\log_{b} ab}\right) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (True and False)|11 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

(1)/(log_(a)(ab))+(1)/(log_(b)(ab))=1

(1)/(log_(bc)abc)+(1)/(log_(ac)abc)+(1)/(log_(ab)abc) is equal to

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

(1)/(log_(a)(ab)+(1)/(log_(b)(ab)=1))

If a, b, c are positive real numbers then (1)/("1+log"_(a)bc) + (1)/("1+log"_(b)ca) +(1)/("1+log"_(c)ab)=

(1)/(log_(ab)(abc))+(1)/(log_(bc)(abc))+(1)/(log_(ca)(abc)) is

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

2([sqrt(log_(a)(ab)^((1)/(4))+log_(b)(ab)^((1)/(4)))-sqrt(log_(a)((b)/(a))^((1)/(4))+log_(b)((a)/(b))^((1)/(4))))sqrt(log_(a)(b))=